Step |
Hyp |
Ref |
Expression |
1 |
|
primefld.1 |
|- P = ( R |`s |^| ( SubDRing ` R ) ) |
2 |
|
id |
|- ( R e. DivRing -> R e. DivRing ) |
3 |
|
issdrg |
|- ( s e. ( SubDRing ` R ) <-> ( R e. DivRing /\ s e. ( SubRing ` R ) /\ ( R |`s s ) e. DivRing ) ) |
4 |
3
|
simp2bi |
|- ( s e. ( SubDRing ` R ) -> s e. ( SubRing ` R ) ) |
5 |
4
|
ssriv |
|- ( SubDRing ` R ) C_ ( SubRing ` R ) |
6 |
5
|
a1i |
|- ( R e. DivRing -> ( SubDRing ` R ) C_ ( SubRing ` R ) ) |
7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
8 |
7
|
sdrgid |
|- ( R e. DivRing -> ( Base ` R ) e. ( SubDRing ` R ) ) |
9 |
8
|
ne0d |
|- ( R e. DivRing -> ( SubDRing ` R ) =/= (/) ) |
10 |
3
|
simp3bi |
|- ( s e. ( SubDRing ` R ) -> ( R |`s s ) e. DivRing ) |
11 |
10
|
adantl |
|- ( ( R e. DivRing /\ s e. ( SubDRing ` R ) ) -> ( R |`s s ) e. DivRing ) |
12 |
1 2 6 9 11
|
subdrgint |
|- ( R e. DivRing -> P e. DivRing ) |
13 |
|
drngring |
|- ( P e. DivRing -> P e. Ring ) |
14 |
12 13
|
syl |
|- ( R e. DivRing -> P e. Ring ) |
15 |
|
ssidd |
|- ( R e. DivRing -> ( Base ` R ) C_ ( Base ` R ) ) |
16 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
17 |
|
eqid |
|- ( Cntz ` ( mulGrp ` R ) ) = ( Cntz ` ( mulGrp ` R ) ) |
18 |
7 16 17
|
cntzsdrg |
|- ( ( R e. DivRing /\ ( Base ` R ) C_ ( Base ` R ) ) -> ( ( Cntz ` ( mulGrp ` R ) ) ` ( Base ` R ) ) e. ( SubDRing ` R ) ) |
19 |
2 15 18
|
syl2anc |
|- ( R e. DivRing -> ( ( Cntz ` ( mulGrp ` R ) ) ` ( Base ` R ) ) e. ( SubDRing ` R ) ) |
20 |
|
intss1 |
|- ( ( ( Cntz ` ( mulGrp ` R ) ) ` ( Base ` R ) ) e. ( SubDRing ` R ) -> |^| ( SubDRing ` R ) C_ ( ( Cntz ` ( mulGrp ` R ) ) ` ( Base ` R ) ) ) |
21 |
19 20
|
syl |
|- ( R e. DivRing -> |^| ( SubDRing ` R ) C_ ( ( Cntz ` ( mulGrp ` R ) ) ` ( Base ` R ) ) ) |
22 |
16 7
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
23 |
22 17
|
cntrval |
|- ( ( Cntz ` ( mulGrp ` R ) ) ` ( Base ` R ) ) = ( Cntr ` ( mulGrp ` R ) ) |
24 |
21 23
|
sseqtrdi |
|- ( R e. DivRing -> |^| ( SubDRing ` R ) C_ ( Cntr ` ( mulGrp ` R ) ) ) |
25 |
22
|
cntrss |
|- ( Cntr ` ( mulGrp ` R ) ) C_ ( Base ` R ) |
26 |
24 25
|
sstrdi |
|- ( R e. DivRing -> |^| ( SubDRing ` R ) C_ ( Base ` R ) ) |
27 |
1 7
|
ressbas2 |
|- ( |^| ( SubDRing ` R ) C_ ( Base ` R ) -> |^| ( SubDRing ` R ) = ( Base ` P ) ) |
28 |
26 27
|
syl |
|- ( R e. DivRing -> |^| ( SubDRing ` R ) = ( Base ` P ) ) |
29 |
28 24
|
eqsstrrd |
|- ( R e. DivRing -> ( Base ` P ) C_ ( Cntr ` ( mulGrp ` R ) ) ) |
30 |
29
|
adantr |
|- ( ( R e. DivRing /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( Base ` P ) C_ ( Cntr ` ( mulGrp ` R ) ) ) |
31 |
|
simprl |
|- ( ( R e. DivRing /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> x e. ( Base ` P ) ) |
32 |
30 31
|
sseldd |
|- ( ( R e. DivRing /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> x e. ( Cntr ` ( mulGrp ` R ) ) ) |
33 |
28 26
|
eqsstrrd |
|- ( R e. DivRing -> ( Base ` P ) C_ ( Base ` R ) ) |
34 |
33
|
adantr |
|- ( ( R e. DivRing /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( Base ` P ) C_ ( Base ` R ) ) |
35 |
|
simprr |
|- ( ( R e. DivRing /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> y e. ( Base ` P ) ) |
36 |
34 35
|
sseldd |
|- ( ( R e. DivRing /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> y e. ( Base ` R ) ) |
37 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
38 |
16 37
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
39 |
|
eqid |
|- ( Cntr ` ( mulGrp ` R ) ) = ( Cntr ` ( mulGrp ` R ) ) |
40 |
22 38 39
|
cntri |
|- ( ( x e. ( Cntr ` ( mulGrp ` R ) ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` R ) y ) = ( y ( .r ` R ) x ) ) |
41 |
32 36 40
|
syl2anc |
|- ( ( R e. DivRing /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( x ( .r ` R ) y ) = ( y ( .r ` R ) x ) ) |
42 |
8 26
|
ssexd |
|- ( R e. DivRing -> |^| ( SubDRing ` R ) e. _V ) |
43 |
1 37
|
ressmulr |
|- ( |^| ( SubDRing ` R ) e. _V -> ( .r ` R ) = ( .r ` P ) ) |
44 |
42 43
|
syl |
|- ( R e. DivRing -> ( .r ` R ) = ( .r ` P ) ) |
45 |
44
|
oveqdr |
|- ( ( R e. DivRing /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` P ) y ) ) |
46 |
44
|
oveqdr |
|- ( ( R e. DivRing /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( y ( .r ` R ) x ) = ( y ( .r ` P ) x ) ) |
47 |
41 45 46
|
3eqtr3d |
|- ( ( R e. DivRing /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( x ( .r ` P ) y ) = ( y ( .r ` P ) x ) ) |
48 |
47
|
ralrimivva |
|- ( R e. DivRing -> A. x e. ( Base ` P ) A. y e. ( Base ` P ) ( x ( .r ` P ) y ) = ( y ( .r ` P ) x ) ) |
49 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
50 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
51 |
49 50
|
iscrng2 |
|- ( P e. CRing <-> ( P e. Ring /\ A. x e. ( Base ` P ) A. y e. ( Base ` P ) ( x ( .r ` P ) y ) = ( y ( .r ` P ) x ) ) ) |
52 |
14 48 51
|
sylanbrc |
|- ( R e. DivRing -> P e. CRing ) |
53 |
|
isfld |
|- ( P e. Field <-> ( P e. DivRing /\ P e. CRing ) ) |
54 |
12 52 53
|
sylanbrc |
|- ( R e. DivRing -> P e. Field ) |