Metamath Proof Explorer


Theorem primefld

Description: The smallest sub division ring of a division ring, here named P , is a field, called thePrime Field of R . (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Hypothesis primefld.1 P = R 𝑠 SubDRing R
Assertion primefld R DivRing P Field

Proof

Step Hyp Ref Expression
1 primefld.1 P = R 𝑠 SubDRing R
2 id R DivRing R DivRing
3 issdrg s SubDRing R R DivRing s SubRing R R 𝑠 s DivRing
4 3 simp2bi s SubDRing R s SubRing R
5 4 ssriv SubDRing R SubRing R
6 5 a1i R DivRing SubDRing R SubRing R
7 eqid Base R = Base R
8 7 sdrgid R DivRing Base R SubDRing R
9 8 ne0d R DivRing SubDRing R
10 3 simp3bi s SubDRing R R 𝑠 s DivRing
11 10 adantl R DivRing s SubDRing R R 𝑠 s DivRing
12 1 2 6 9 11 subdrgint R DivRing P DivRing
13 drngring P DivRing P Ring
14 12 13 syl R DivRing P Ring
15 ssidd R DivRing Base R Base R
16 eqid mulGrp R = mulGrp R
17 eqid Cntz mulGrp R = Cntz mulGrp R
18 7 16 17 cntzsdrg R DivRing Base R Base R Cntz mulGrp R Base R SubDRing R
19 2 15 18 syl2anc R DivRing Cntz mulGrp R Base R SubDRing R
20 intss1 Cntz mulGrp R Base R SubDRing R SubDRing R Cntz mulGrp R Base R
21 19 20 syl R DivRing SubDRing R Cntz mulGrp R Base R
22 16 7 mgpbas Base R = Base mulGrp R
23 22 17 cntrval Cntz mulGrp R Base R = Cntr mulGrp R
24 21 23 sseqtrdi R DivRing SubDRing R Cntr mulGrp R
25 22 cntrss Cntr mulGrp R Base R
26 24 25 sstrdi R DivRing SubDRing R Base R
27 1 7 ressbas2 SubDRing R Base R SubDRing R = Base P
28 26 27 syl R DivRing SubDRing R = Base P
29 28 24 eqsstrrd R DivRing Base P Cntr mulGrp R
30 29 adantr R DivRing x Base P y Base P Base P Cntr mulGrp R
31 simprl R DivRing x Base P y Base P x Base P
32 30 31 sseldd R DivRing x Base P y Base P x Cntr mulGrp R
33 28 26 eqsstrrd R DivRing Base P Base R
34 33 adantr R DivRing x Base P y Base P Base P Base R
35 simprr R DivRing x Base P y Base P y Base P
36 34 35 sseldd R DivRing x Base P y Base P y Base R
37 eqid R = R
38 16 37 mgpplusg R = + mulGrp R
39 eqid Cntr mulGrp R = Cntr mulGrp R
40 22 38 39 cntri x Cntr mulGrp R y Base R x R y = y R x
41 32 36 40 syl2anc R DivRing x Base P y Base P x R y = y R x
42 8 26 ssexd R DivRing SubDRing R V
43 1 37 ressmulr SubDRing R V R = P
44 42 43 syl R DivRing R = P
45 44 oveqdr R DivRing x Base P y Base P x R y = x P y
46 44 oveqdr R DivRing x Base P y Base P y R x = y P x
47 41 45 46 3eqtr3d R DivRing x Base P y Base P x P y = y P x
48 47 ralrimivva R DivRing x Base P y Base P x P y = y P x
49 eqid Base P = Base P
50 eqid P = P
51 49 50 iscrng2 P CRing P Ring x Base P y Base P x P y = y P x
52 14 48 51 sylanbrc R DivRing P CRing
53 isfld P Field P DivRing P CRing
54 12 52 53 sylanbrc R DivRing P Field