| Step |
Hyp |
Ref |
Expression |
| 1 |
|
primefld.1 |
|
| 2 |
|
id |
|
| 3 |
|
issdrg |
|
| 4 |
3
|
simp2bi |
|
| 5 |
4
|
ssriv |
|
| 6 |
5
|
a1i |
|
| 7 |
|
eqid |
|
| 8 |
7
|
sdrgid |
|
| 9 |
8
|
ne0d |
|
| 10 |
3
|
simp3bi |
|
| 11 |
10
|
adantl |
|
| 12 |
1 2 6 9 11
|
subdrgint |
|
| 13 |
|
drngring |
|
| 14 |
12 13
|
syl |
|
| 15 |
|
ssidd |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
7 16 17
|
cntzsdrg |
|
| 19 |
2 15 18
|
syl2anc |
|
| 20 |
|
intss1 |
|
| 21 |
19 20
|
syl |
|
| 22 |
16 7
|
mgpbas |
|
| 23 |
22 17
|
cntrval |
|
| 24 |
21 23
|
sseqtrdi |
|
| 25 |
22
|
cntrss |
|
| 26 |
24 25
|
sstrdi |
|
| 27 |
1 7
|
ressbas2 |
|
| 28 |
26 27
|
syl |
|
| 29 |
28 24
|
eqsstrrd |
|
| 30 |
29
|
adantr |
|
| 31 |
|
simprl |
|
| 32 |
30 31
|
sseldd |
|
| 33 |
28 26
|
eqsstrrd |
|
| 34 |
33
|
adantr |
|
| 35 |
|
simprr |
|
| 36 |
34 35
|
sseldd |
|
| 37 |
|
eqid |
|
| 38 |
16 37
|
mgpplusg |
|
| 39 |
|
eqid |
|
| 40 |
22 38 39
|
cntri |
|
| 41 |
32 36 40
|
syl2anc |
|
| 42 |
8 26
|
ssexd |
|
| 43 |
1 37
|
ressmulr |
|
| 44 |
42 43
|
syl |
|
| 45 |
44
|
oveqdr |
|
| 46 |
44
|
oveqdr |
|
| 47 |
41 45 46
|
3eqtr3d |
|
| 48 |
47
|
ralrimivva |
|
| 49 |
|
eqid |
|
| 50 |
|
eqid |
|
| 51 |
49 50
|
iscrng2 |
|
| 52 |
14 48 51
|
sylanbrc |
|
| 53 |
|
isfld |
|
| 54 |
12 52 53
|
sylanbrc |
|