Step |
Hyp |
Ref |
Expression |
1 |
|
cntzsdrg.b |
|
2 |
|
cntzsdrg.m |
|
3 |
|
cntzsdrg.z |
|
4 |
|
simpl |
|
5 |
|
drngring |
|
6 |
1 2 3
|
cntzsubr |
|
7 |
5 6
|
sylan |
|
8 |
|
oveq2 |
|
9 |
|
oveq1 |
|
10 |
8 9
|
eqeq12d |
|
11 |
|
eldifsn |
|
12 |
|
eqid |
|
13 |
2
|
oveq1i |
|
14 |
|
eqid |
|
15 |
12 13 14
|
invrfval |
|
16 |
|
eqid |
|
17 |
1 12 16
|
isdrng |
|
18 |
17
|
simprbi |
|
19 |
18
|
oveq2d |
|
20 |
19
|
fveq2d |
|
21 |
15 20
|
eqtrid |
|
22 |
21
|
ad2antrr |
|
23 |
22
|
fveq1d |
|
24 |
2
|
oveq1i |
|
25 |
1 16 24
|
drngmgp |
|
26 |
25
|
ad2antrr |
|
27 |
|
ssdif |
|
28 |
27
|
ad2antlr |
|
29 |
|
difss |
|
30 |
|
eqid |
|
31 |
2 1
|
mgpbas |
|
32 |
30 31
|
ressbas2 |
|
33 |
29 32
|
ax-mp |
|
34 |
|
eqid |
|
35 |
33 34
|
cntzsubg |
|
36 |
26 28 35
|
syl2anc |
|
37 |
|
simpr |
|
38 |
|
difss |
|
39 |
31 3
|
cntz2ss |
|
40 |
37 38 39
|
sylancl |
|
41 |
40
|
ssdifssd |
|
42 |
41
|
sselda |
|
43 |
31 3
|
cntzssv |
|
44 |
|
ssdif |
|
45 |
43 44
|
mp1i |
|
46 |
45
|
sselda |
|
47 |
42 46
|
elind |
|
48 |
1
|
fvexi |
|
49 |
48
|
difexi |
|
50 |
30 3 34
|
resscntz |
|
51 |
49 28 50
|
sylancr |
|
52 |
47 51
|
eleqtrrd |
|
53 |
|
eqid |
|
54 |
53
|
subginvcl |
|
55 |
36 52 54
|
syl2anc |
|
56 |
23 55
|
eqeltrd |
|
57 |
|
eqid |
|
58 |
2 57
|
mgpplusg |
|
59 |
30 58
|
ressplusg |
|
60 |
49 59
|
ax-mp |
|
61 |
60 34
|
cntzi |
|
62 |
56 61
|
sylan |
|
63 |
11 62
|
sylan2br |
|
64 |
63
|
anassrs |
|
65 |
5
|
ad3antrrr |
|
66 |
4
|
adantr |
|
67 |
|
eldifi |
|
68 |
67
|
adantl |
|
69 |
43 68
|
sselid |
|
70 |
|
eldifsni |
|
71 |
70
|
adantl |
|
72 |
1 16 14
|
drnginvrcl |
|
73 |
66 69 71 72
|
syl3anc |
|
74 |
73
|
adantr |
|
75 |
1 57 16
|
ringrz |
|
76 |
65 74 75
|
syl2anc |
|
77 |
1 57 16
|
ringlz |
|
78 |
65 74 77
|
syl2anc |
|
79 |
76 78
|
eqtr4d |
|
80 |
10 64 79
|
pm2.61ne |
|
81 |
80
|
ralrimiva |
|
82 |
|
simplr |
|
83 |
31 58 3
|
cntzel |
|
84 |
82 73 83
|
syl2anc |
|
85 |
81 84
|
mpbird |
|
86 |
85
|
ralrimiva |
|
87 |
14 16
|
issdrg2 |
|
88 |
4 7 86 87
|
syl3anbrc |
|