Database
BASIC ALGEBRAIC STRUCTURES
Groups
Centralizers and centers
cntzel
Next ⟩
cntzsnval
Metamath Proof Explorer
Ascii
Unicode
Theorem
cntzel
Description:
Membership in a centralizer.
(Contributed by
Stefan O'Rear
, 6-Sep-2015)
Ref
Expression
Hypotheses
cntzfval.b
⊢
B
=
Base
M
cntzfval.p
⊢
+
˙
=
+
M
cntzfval.z
⊢
Z
=
Cntz
⁡
M
Assertion
cntzel
⊢
S
⊆
B
∧
X
∈
B
→
X
∈
Z
⁡
S
↔
∀
y
∈
S
X
+
˙
y
=
y
+
˙
X
Proof
Step
Hyp
Ref
Expression
1
cntzfval.b
⊢
B
=
Base
M
2
cntzfval.p
⊢
+
˙
=
+
M
3
cntzfval.z
⊢
Z
=
Cntz
⁡
M
4
1
2
3
elcntz
⊢
S
⊆
B
→
X
∈
Z
⁡
S
↔
X
∈
B
∧
∀
y
∈
S
X
+
˙
y
=
y
+
˙
X
5
4
baibd
⊢
S
⊆
B
∧
X
∈
B
→
X
∈
Z
⁡
S
↔
∀
y
∈
S
X
+
˙
y
=
y
+
˙
X