Metamath Proof Explorer


Theorem primefld0cl

Description: The prime field contains the zero element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023)

Ref Expression
Hypothesis primefld0cl.1 0˙=0R
Assertion primefld0cl RDivRing0˙SubDRingR

Proof

Step Hyp Ref Expression
1 primefld0cl.1 0˙=0R
2 issdrg sSubDRingRRDivRingsSubRingRR𝑠sDivRing
3 2 simp2bi sSubDRingRsSubRingR
4 subrgsubg sSubRingRsSubGrpR
5 3 4 syl sSubDRingRsSubGrpR
6 5 a1i RDivRingsSubDRingRsSubGrpR
7 6 ssrdv RDivRingSubDRingRSubGrpR
8 eqid BaseR=BaseR
9 8 sdrgid RDivRingBaseRSubDRingR
10 9 ne0d RDivRingSubDRingR
11 subgint SubDRingRSubGrpRSubDRingRSubDRingRSubGrpR
12 7 10 11 syl2anc RDivRingSubDRingRSubGrpR
13 1 subg0cl SubDRingRSubGrpR0˙SubDRingR
14 12 13 syl RDivRing0˙SubDRingR