Metamath Proof Explorer


Theorem primefld0cl

Description: The prime field contains the neutral element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023)

Ref Expression
Hypothesis primefld0cl.1 0 ˙ = 0 R
Assertion primefld0cl R DivRing 0 ˙ SubDRing R

Proof

Step Hyp Ref Expression
1 primefld0cl.1 0 ˙ = 0 R
2 issdrg s SubDRing R R DivRing s SubRing R R 𝑠 s DivRing
3 2 simp2bi s SubDRing R s SubRing R
4 subrgsubg s SubRing R s SubGrp R
5 3 4 syl s SubDRing R s SubGrp R
6 5 a1i R DivRing s SubDRing R s SubGrp R
7 6 ssrdv R DivRing SubDRing R SubGrp R
8 eqid Base R = Base R
9 8 sdrgid R DivRing Base R SubDRing R
10 9 ne0d R DivRing SubDRing R
11 subgint SubDRing R SubGrp R SubDRing R SubDRing R SubGrp R
12 7 10 11 syl2anc R DivRing SubDRing R SubGrp R
13 1 subg0cl SubDRing R SubGrp R 0 ˙ SubDRing R
14 12 13 syl R DivRing 0 ˙ SubDRing R