Description: The prime field contains the zero element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | primefld0cl.1 | |
|
Assertion | primefld0cl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | primefld0cl.1 | |
|
2 | issdrg | |
|
3 | 2 | simp2bi | |
4 | subrgsubg | |
|
5 | 3 4 | syl | |
6 | 5 | a1i | |
7 | 6 | ssrdv | |
8 | eqid | |
|
9 | 8 | sdrgid | |
10 | 9 | ne0d | |
11 | subgint | |
|
12 | 7 10 11 | syl2anc | |
13 | 1 | subg0cl | |
14 | 12 13 | syl | |