Step |
Hyp |
Ref |
Expression |
1 |
|
primefld0cl.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
2 |
|
issdrg |
⊢ ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑠 ) ∈ DivRing ) ) |
3 |
2
|
simp2bi |
⊢ ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) → 𝑠 ∈ ( SubRing ‘ 𝑅 ) ) |
4 |
|
subrgsubg |
⊢ ( 𝑠 ∈ ( SubRing ‘ 𝑅 ) → 𝑠 ∈ ( SubGrp ‘ 𝑅 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) → 𝑠 ∈ ( SubGrp ‘ 𝑅 ) ) |
6 |
5
|
a1i |
⊢ ( 𝑅 ∈ DivRing → ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) → 𝑠 ∈ ( SubGrp ‘ 𝑅 ) ) ) |
7 |
6
|
ssrdv |
⊢ ( 𝑅 ∈ DivRing → ( SubDRing ‘ 𝑅 ) ⊆ ( SubGrp ‘ 𝑅 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
8
|
sdrgid |
⊢ ( 𝑅 ∈ DivRing → ( Base ‘ 𝑅 ) ∈ ( SubDRing ‘ 𝑅 ) ) |
10 |
9
|
ne0d |
⊢ ( 𝑅 ∈ DivRing → ( SubDRing ‘ 𝑅 ) ≠ ∅ ) |
11 |
|
subgint |
⊢ ( ( ( SubDRing ‘ 𝑅 ) ⊆ ( SubGrp ‘ 𝑅 ) ∧ ( SubDRing ‘ 𝑅 ) ≠ ∅ ) → ∩ ( SubDRing ‘ 𝑅 ) ∈ ( SubGrp ‘ 𝑅 ) ) |
12 |
7 10 11
|
syl2anc |
⊢ ( 𝑅 ∈ DivRing → ∩ ( SubDRing ‘ 𝑅 ) ∈ ( SubGrp ‘ 𝑅 ) ) |
13 |
1
|
subg0cl |
⊢ ( ∩ ( SubDRing ‘ 𝑅 ) ∈ ( SubGrp ‘ 𝑅 ) → 0 ∈ ∩ ( SubDRing ‘ 𝑅 ) ) |
14 |
12 13
|
syl |
⊢ ( 𝑅 ∈ DivRing → 0 ∈ ∩ ( SubDRing ‘ 𝑅 ) ) |