Metamath Proof Explorer


Theorem primefld1cl

Description: The prime field contains the multiplicative neutral element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023)

Ref Expression
Hypothesis primefld1cl.1 1 = ( 1r𝑅 )
Assertion primefld1cl ( 𝑅 ∈ DivRing → 1 ( SubDRing ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 primefld1cl.1 1 = ( 1r𝑅 )
2 issdrg ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅s 𝑠 ) ∈ DivRing ) )
3 2 simp2bi ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) → 𝑠 ∈ ( SubRing ‘ 𝑅 ) )
4 3 a1i ( 𝑅 ∈ DivRing → ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) → 𝑠 ∈ ( SubRing ‘ 𝑅 ) ) )
5 4 ssrdv ( 𝑅 ∈ DivRing → ( SubDRing ‘ 𝑅 ) ⊆ ( SubRing ‘ 𝑅 ) )
6 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
7 6 sdrgid ( 𝑅 ∈ DivRing → ( Base ‘ 𝑅 ) ∈ ( SubDRing ‘ 𝑅 ) )
8 7 ne0d ( 𝑅 ∈ DivRing → ( SubDRing ‘ 𝑅 ) ≠ ∅ )
9 subrgint ( ( ( SubDRing ‘ 𝑅 ) ⊆ ( SubRing ‘ 𝑅 ) ∧ ( SubDRing ‘ 𝑅 ) ≠ ∅ ) → ( SubDRing ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) )
10 5 8 9 syl2anc ( 𝑅 ∈ DivRing → ( SubDRing ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) )
11 1 subrg1cl ( ( SubDRing ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) → 1 ( SubDRing ‘ 𝑅 ) )
12 10 11 syl ( 𝑅 ∈ DivRing → 1 ( SubDRing ‘ 𝑅 ) )