Step |
Hyp |
Ref |
Expression |
1 |
|
subrgsubg |
⊢ ( 𝑟 ∈ ( SubRing ‘ 𝑅 ) → 𝑟 ∈ ( SubGrp ‘ 𝑅 ) ) |
2 |
1
|
ssriv |
⊢ ( SubRing ‘ 𝑅 ) ⊆ ( SubGrp ‘ 𝑅 ) |
3 |
|
sstr |
⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ ( SubRing ‘ 𝑅 ) ⊆ ( SubGrp ‘ 𝑅 ) ) → 𝑆 ⊆ ( SubGrp ‘ 𝑅 ) ) |
4 |
2 3
|
mpan2 |
⊢ ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) → 𝑆 ⊆ ( SubGrp ‘ 𝑅 ) ) |
5 |
|
subgint |
⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
7 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑟 ∈ 𝑆 ) → 𝑟 ∈ ( SubRing ‘ 𝑅 ) ) |
8 |
7
|
adantlr |
⊢ ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝑆 ) → 𝑟 ∈ ( SubRing ‘ 𝑅 ) ) |
9 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
10 |
9
|
subrg1cl |
⊢ ( 𝑟 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝑟 ) |
11 |
8 10
|
syl |
⊢ ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑟 ∈ 𝑆 ) → ( 1r ‘ 𝑅 ) ∈ 𝑟 ) |
12 |
11
|
ralrimiva |
⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∀ 𝑟 ∈ 𝑆 ( 1r ‘ 𝑅 ) ∈ 𝑟 ) |
13 |
|
fvex |
⊢ ( 1r ‘ 𝑅 ) ∈ V |
14 |
13
|
elint2 |
⊢ ( ( 1r ‘ 𝑅 ) ∈ ∩ 𝑆 ↔ ∀ 𝑟 ∈ 𝑆 ( 1r ‘ 𝑅 ) ∈ 𝑟 ) |
15 |
12 14
|
sylibr |
⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ( 1r ‘ 𝑅 ) ∈ ∩ 𝑆 ) |
16 |
8
|
adantlr |
⊢ ( ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → 𝑟 ∈ ( SubRing ‘ 𝑅 ) ) |
17 |
|
simprl |
⊢ ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → 𝑥 ∈ ∩ 𝑆 ) |
18 |
|
elinti |
⊢ ( 𝑥 ∈ ∩ 𝑆 → ( 𝑟 ∈ 𝑆 → 𝑥 ∈ 𝑟 ) ) |
19 |
18
|
imp |
⊢ ( ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆 ) → 𝑥 ∈ 𝑟 ) |
20 |
17 19
|
sylan |
⊢ ( ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → 𝑥 ∈ 𝑟 ) |
21 |
|
simprr |
⊢ ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → 𝑦 ∈ ∩ 𝑆 ) |
22 |
|
elinti |
⊢ ( 𝑦 ∈ ∩ 𝑆 → ( 𝑟 ∈ 𝑆 → 𝑦 ∈ 𝑟 ) ) |
23 |
22
|
imp |
⊢ ( ( 𝑦 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆 ) → 𝑦 ∈ 𝑟 ) |
24 |
21 23
|
sylan |
⊢ ( ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → 𝑦 ∈ 𝑟 ) |
25 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
26 |
25
|
subrgmcl |
⊢ ( ( 𝑟 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑟 ∧ 𝑦 ∈ 𝑟 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
27 |
16 20 24 26
|
syl3anc |
⊢ ( ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
28 |
27
|
ralrimiva |
⊢ ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → ∀ 𝑟 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
29 |
|
ovex |
⊢ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ V |
30 |
29
|
elint2 |
⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ↔ ∀ 𝑟 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
31 |
28 30
|
sylibr |
⊢ ( ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) |
32 |
31
|
ralrimivva |
⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∀ 𝑥 ∈ ∩ 𝑆 ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) |
33 |
|
ssn0 |
⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ( SubRing ‘ 𝑅 ) ≠ ∅ ) |
34 |
|
n0 |
⊢ ( ( SubRing ‘ 𝑅 ) ≠ ∅ ↔ ∃ 𝑟 𝑟 ∈ ( SubRing ‘ 𝑅 ) ) |
35 |
|
subrgrcl |
⊢ ( 𝑟 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
36 |
35
|
exlimiv |
⊢ ( ∃ 𝑟 𝑟 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
37 |
34 36
|
sylbi |
⊢ ( ( SubRing ‘ 𝑅 ) ≠ ∅ → 𝑅 ∈ Ring ) |
38 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
39 |
38 9 25
|
issubrg2 |
⊢ ( 𝑅 ∈ Ring → ( ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ ∩ 𝑆 ∧ ∀ 𝑥 ∈ ∩ 𝑆 ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) ) ) |
40 |
33 37 39
|
3syl |
⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ( ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ ∩ 𝑆 ∧ ∀ 𝑥 ∈ ∩ 𝑆 ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) ) ) |
41 |
6 15 32 40
|
mpbir3and |
⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |