| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgsubg |
|
| 2 |
1
|
ssriv |
|
| 3 |
|
sstr |
|
| 4 |
2 3
|
mpan2 |
|
| 5 |
|
subgint |
|
| 6 |
4 5
|
sylan |
|
| 7 |
|
ssel2 |
|
| 8 |
7
|
adantlr |
|
| 9 |
|
eqid |
|
| 10 |
9
|
subrg1cl |
|
| 11 |
8 10
|
syl |
|
| 12 |
11
|
ralrimiva |
|
| 13 |
|
fvex |
|
| 14 |
13
|
elint2 |
|
| 15 |
12 14
|
sylibr |
|
| 16 |
8
|
adantlr |
|
| 17 |
|
simprl |
|
| 18 |
|
elinti |
|
| 19 |
18
|
imp |
|
| 20 |
17 19
|
sylan |
|
| 21 |
|
simprr |
|
| 22 |
|
elinti |
|
| 23 |
22
|
imp |
|
| 24 |
21 23
|
sylan |
|
| 25 |
|
eqid |
|
| 26 |
25
|
subrgmcl |
|
| 27 |
16 20 24 26
|
syl3anc |
|
| 28 |
27
|
ralrimiva |
|
| 29 |
|
ovex |
|
| 30 |
29
|
elint2 |
|
| 31 |
28 30
|
sylibr |
|
| 32 |
31
|
ralrimivva |
|
| 33 |
|
ssn0 |
|
| 34 |
|
n0 |
|
| 35 |
|
subrgrcl |
|
| 36 |
35
|
exlimiv |
|
| 37 |
34 36
|
sylbi |
|
| 38 |
|
eqid |
|
| 39 |
38 9 25
|
issubrg2 |
|
| 40 |
33 37 39
|
3syl |
|
| 41 |
6 15 32 40
|
mpbir3and |
|