Metamath Proof Explorer


Theorem subrgin

Description: The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014) (Revised by Mario Carneiro, 7-Dec-2014)

Ref Expression
Assertion subrgin A SubRing R B SubRing R A B SubRing R

Proof

Step Hyp Ref Expression
1 intprg A SubRing R B SubRing R A B = A B
2 prssi A SubRing R B SubRing R A B SubRing R
3 prnzg A SubRing R A B
4 3 adantr A SubRing R B SubRing R A B
5 subrgint A B SubRing R A B A B SubRing R
6 2 4 5 syl2anc A SubRing R B SubRing R A B SubRing R
7 1 6 eqeltrrd A SubRing R B SubRing R A B SubRing R