| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intprg |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) |
| 2 |
|
prssi |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) → { 𝐴 , 𝐵 } ⊆ ( SubRing ‘ 𝑅 ) ) |
| 3 |
|
prnzg |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → { 𝐴 , 𝐵 } ≠ ∅ ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) → { 𝐴 , 𝐵 } ≠ ∅ ) |
| 5 |
|
subrgint |
⊢ ( ( { 𝐴 , 𝐵 } ⊆ ( SubRing ‘ 𝑅 ) ∧ { 𝐴 , 𝐵 } ≠ ∅ ) → ∩ { 𝐴 , 𝐵 } ∈ ( SubRing ‘ 𝑅 ) ) |
| 6 |
2 4 5
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) → ∩ { 𝐴 , 𝐵 } ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 |
1 6
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑅 ) ) |