Metamath Proof Explorer


Theorem subrgmre

Description: The subrings of a ring are a Moore system. (Contributed by Stefan O'Rear, 9-Mar-2015)

Ref Expression
Hypothesis subrgmre.b 𝐵 = ( Base ‘ 𝑅 )
Assertion subrgmre ( 𝑅 ∈ Ring → ( SubRing ‘ 𝑅 ) ∈ ( Moore ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 subrgmre.b 𝐵 = ( Base ‘ 𝑅 )
2 1 subrgss ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) → 𝑎𝐵 )
3 velpw ( 𝑎 ∈ 𝒫 𝐵𝑎𝐵 )
4 2 3 sylibr ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) → 𝑎 ∈ 𝒫 𝐵 )
5 4 a1i ( 𝑅 ∈ Ring → ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) → 𝑎 ∈ 𝒫 𝐵 ) )
6 5 ssrdv ( 𝑅 ∈ Ring → ( SubRing ‘ 𝑅 ) ⊆ 𝒫 𝐵 )
7 1 subrgid ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) )
8 subrgint ( ( 𝑎 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ≠ ∅ ) → 𝑎 ∈ ( SubRing ‘ 𝑅 ) )
9 8 3adant1 ( ( 𝑅 ∈ Ring ∧ 𝑎 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ≠ ∅ ) → 𝑎 ∈ ( SubRing ‘ 𝑅 ) )
10 6 7 9 ismred ( 𝑅 ∈ Ring → ( SubRing ‘ 𝑅 ) ∈ ( Moore ‘ 𝐵 ) )