| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgmre.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
1
|
subrgss |
⊢ ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) → 𝑎 ⊆ 𝐵 ) |
| 3 |
|
velpw |
⊢ ( 𝑎 ∈ 𝒫 𝐵 ↔ 𝑎 ⊆ 𝐵 ) |
| 4 |
2 3
|
sylibr |
⊢ ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) → 𝑎 ∈ 𝒫 𝐵 ) |
| 5 |
4
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) → 𝑎 ∈ 𝒫 𝐵 ) ) |
| 6 |
5
|
ssrdv |
⊢ ( 𝑅 ∈ Ring → ( SubRing ‘ 𝑅 ) ⊆ 𝒫 𝐵 ) |
| 7 |
1
|
subrgid |
⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 8 |
|
subrgint |
⊢ ( ( 𝑎 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ∈ ( SubRing ‘ 𝑅 ) ) |
| 9 |
8
|
3adant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ∈ ( SubRing ‘ 𝑅 ) ) |
| 10 |
6 7 9
|
ismred |
⊢ ( 𝑅 ∈ Ring → ( SubRing ‘ 𝑅 ) ∈ ( Moore ‘ 𝐵 ) ) |