Step |
Hyp |
Ref |
Expression |
1 |
|
subrgmre.b |
|- B = ( Base ` R ) |
2 |
1
|
subrgss |
|- ( a e. ( SubRing ` R ) -> a C_ B ) |
3 |
|
velpw |
|- ( a e. ~P B <-> a C_ B ) |
4 |
2 3
|
sylibr |
|- ( a e. ( SubRing ` R ) -> a e. ~P B ) |
5 |
4
|
a1i |
|- ( R e. Ring -> ( a e. ( SubRing ` R ) -> a e. ~P B ) ) |
6 |
5
|
ssrdv |
|- ( R e. Ring -> ( SubRing ` R ) C_ ~P B ) |
7 |
1
|
subrgid |
|- ( R e. Ring -> B e. ( SubRing ` R ) ) |
8 |
|
subrgint |
|- ( ( a C_ ( SubRing ` R ) /\ a =/= (/) ) -> |^| a e. ( SubRing ` R ) ) |
9 |
8
|
3adant1 |
|- ( ( R e. Ring /\ a C_ ( SubRing ` R ) /\ a =/= (/) ) -> |^| a e. ( SubRing ` R ) ) |
10 |
6 7 9
|
ismred |
|- ( R e. Ring -> ( SubRing ` R ) e. ( Moore ` B ) ) |