Step |
Hyp |
Ref |
Expression |
1 |
|
primefld.1 |
⊢ 𝑃 = ( 𝑅 ↾s ∩ ( SubDRing ‘ 𝑅 ) ) |
2 |
|
id |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ DivRing ) |
3 |
|
issdrg |
⊢ ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑠 ) ∈ DivRing ) ) |
4 |
3
|
simp2bi |
⊢ ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) → 𝑠 ∈ ( SubRing ‘ 𝑅 ) ) |
5 |
4
|
ssriv |
⊢ ( SubDRing ‘ 𝑅 ) ⊆ ( SubRing ‘ 𝑅 ) |
6 |
5
|
a1i |
⊢ ( 𝑅 ∈ DivRing → ( SubDRing ‘ 𝑅 ) ⊆ ( SubRing ‘ 𝑅 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
8 |
7
|
sdrgid |
⊢ ( 𝑅 ∈ DivRing → ( Base ‘ 𝑅 ) ∈ ( SubDRing ‘ 𝑅 ) ) |
9 |
8
|
ne0d |
⊢ ( 𝑅 ∈ DivRing → ( SubDRing ‘ 𝑅 ) ≠ ∅ ) |
10 |
3
|
simp3bi |
⊢ ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝑠 ) ∈ DivRing ) |
11 |
10
|
adantl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑠 ∈ ( SubDRing ‘ 𝑅 ) ) → ( 𝑅 ↾s 𝑠 ) ∈ DivRing ) |
12 |
1 2 6 9 11
|
subdrgint |
⊢ ( 𝑅 ∈ DivRing → 𝑃 ∈ DivRing ) |
13 |
|
drngring |
⊢ ( 𝑃 ∈ DivRing → 𝑃 ∈ Ring ) |
14 |
12 13
|
syl |
⊢ ( 𝑅 ∈ DivRing → 𝑃 ∈ Ring ) |
15 |
|
ssidd |
⊢ ( 𝑅 ∈ DivRing → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) |
16 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
17 |
|
eqid |
⊢ ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) = ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) |
18 |
7 16 17
|
cntzsdrg |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) → ( ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) ‘ ( Base ‘ 𝑅 ) ) ∈ ( SubDRing ‘ 𝑅 ) ) |
19 |
2 15 18
|
syl2anc |
⊢ ( 𝑅 ∈ DivRing → ( ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) ‘ ( Base ‘ 𝑅 ) ) ∈ ( SubDRing ‘ 𝑅 ) ) |
20 |
|
intss1 |
⊢ ( ( ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) ‘ ( Base ‘ 𝑅 ) ) ∈ ( SubDRing ‘ 𝑅 ) → ∩ ( SubDRing ‘ 𝑅 ) ⊆ ( ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) ‘ ( Base ‘ 𝑅 ) ) ) |
21 |
19 20
|
syl |
⊢ ( 𝑅 ∈ DivRing → ∩ ( SubDRing ‘ 𝑅 ) ⊆ ( ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) ‘ ( Base ‘ 𝑅 ) ) ) |
22 |
16 7
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
23 |
22 17
|
cntrval |
⊢ ( ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) ‘ ( Base ‘ 𝑅 ) ) = ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) |
24 |
21 23
|
sseqtrdi |
⊢ ( 𝑅 ∈ DivRing → ∩ ( SubDRing ‘ 𝑅 ) ⊆ ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ) |
25 |
22
|
cntrss |
⊢ ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ⊆ ( Base ‘ 𝑅 ) |
26 |
24 25
|
sstrdi |
⊢ ( 𝑅 ∈ DivRing → ∩ ( SubDRing ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) |
27 |
1 7
|
ressbas2 |
⊢ ( ∩ ( SubDRing ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) → ∩ ( SubDRing ‘ 𝑅 ) = ( Base ‘ 𝑃 ) ) |
28 |
26 27
|
syl |
⊢ ( 𝑅 ∈ DivRing → ∩ ( SubDRing ‘ 𝑅 ) = ( Base ‘ 𝑃 ) ) |
29 |
28 24
|
eqsstrrd |
⊢ ( 𝑅 ∈ DivRing → ( Base ‘ 𝑃 ) ⊆ ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( Base ‘ 𝑃 ) ⊆ ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ) |
31 |
|
simprl |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑃 ) ) |
32 |
30 31
|
sseldd |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑥 ∈ ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ) |
33 |
28 26
|
eqsstrrd |
⊢ ( 𝑅 ∈ DivRing → ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑅 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑅 ) ) |
35 |
|
simprr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑃 ) ) |
36 |
34 35
|
sseldd |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
37 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
38 |
16 37
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
39 |
|
eqid |
⊢ ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) = ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) |
40 |
22 38 39
|
cntri |
⊢ ( ( 𝑥 ∈ ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
41 |
32 36 40
|
syl2anc |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
42 |
8 26
|
ssexd |
⊢ ( 𝑅 ∈ DivRing → ∩ ( SubDRing ‘ 𝑅 ) ∈ V ) |
43 |
1 37
|
ressmulr |
⊢ ( ∩ ( SubDRing ‘ 𝑅 ) ∈ V → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑃 ) ) |
44 |
42 43
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑃 ) ) |
45 |
44
|
oveqdr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) |
46 |
44
|
oveqdr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑦 ( .r ‘ 𝑃 ) 𝑥 ) ) |
47 |
41 45 46
|
3eqtr3d |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑃 ) 𝑥 ) ) |
48 |
47
|
ralrimivva |
⊢ ( 𝑅 ∈ DivRing → ∀ 𝑥 ∈ ( Base ‘ 𝑃 ) ∀ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑃 ) 𝑥 ) ) |
49 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
50 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
51 |
49 50
|
iscrng2 |
⊢ ( 𝑃 ∈ CRing ↔ ( 𝑃 ∈ Ring ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑃 ) ∀ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑃 ) 𝑥 ) ) ) |
52 |
14 48 51
|
sylanbrc |
⊢ ( 𝑅 ∈ DivRing → 𝑃 ∈ CRing ) |
53 |
|
isfld |
⊢ ( 𝑃 ∈ Field ↔ ( 𝑃 ∈ DivRing ∧ 𝑃 ∈ CRing ) ) |
54 |
12 52 53
|
sylanbrc |
⊢ ( 𝑅 ∈ DivRing → 𝑃 ∈ Field ) |