Metamath Proof Explorer


Theorem iscrng2

Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses ringcl.b 𝐵 = ( Base ‘ 𝑅 )
ringcl.t · = ( .r𝑅 )
Assertion iscrng2 ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 ringcl.b 𝐵 = ( Base ‘ 𝑅 )
2 ringcl.t · = ( .r𝑅 )
3 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
4 3 iscrng ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ ( mulGrp ‘ 𝑅 ) ∈ CMnd ) )
5 3 ringmgp ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
6 3 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
7 3 2 mgpplusg · = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
8 6 7 iscmn ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ↔ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) )
9 8 baib ( ( mulGrp ‘ 𝑅 ) ∈ Mnd → ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ↔ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) )
10 5 9 syl ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ↔ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) )
11 10 pm5.32i ( ( 𝑅 ∈ Ring ∧ ( mulGrp ‘ 𝑅 ) ∈ CMnd ) ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) )
12 4 11 bitri ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) )