| Step |
Hyp |
Ref |
Expression |
| 1 |
|
suppss3.1 |
|- G = ( x e. A |-> B ) |
| 2 |
|
suppss3.a |
|- ( ph -> A e. V ) |
| 3 |
|
suppss3.z |
|- ( ph -> Z e. W ) |
| 4 |
|
suppss3.2 |
|- ( ph -> F Fn A ) |
| 5 |
|
suppss3.3 |
|- ( ( ph /\ x e. A /\ ( F ` x ) = Z ) -> B = Z ) |
| 6 |
1
|
oveq1i |
|- ( G supp Z ) = ( ( x e. A |-> B ) supp Z ) |
| 7 |
|
simpl |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ph ) |
| 8 |
|
eldifi |
|- ( x e. ( A \ ( F supp Z ) ) -> x e. A ) |
| 9 |
8
|
adantl |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> x e. A ) |
| 10 |
|
fnex |
|- ( ( F Fn A /\ A e. V ) -> F e. _V ) |
| 11 |
4 2 10
|
syl2anc |
|- ( ph -> F e. _V ) |
| 12 |
|
suppimacnv |
|- ( ( F e. _V /\ Z e. W ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
| 13 |
11 3 12
|
syl2anc |
|- ( ph -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
| 14 |
13
|
eleq2d |
|- ( ph -> ( x e. ( F supp Z ) <-> x e. ( `' F " ( _V \ { Z } ) ) ) ) |
| 15 |
|
elpreima |
|- ( F Fn A -> ( x e. ( `' F " ( _V \ { Z } ) ) <-> ( x e. A /\ ( F ` x ) e. ( _V \ { Z } ) ) ) ) |
| 16 |
4 15
|
syl |
|- ( ph -> ( x e. ( `' F " ( _V \ { Z } ) ) <-> ( x e. A /\ ( F ` x ) e. ( _V \ { Z } ) ) ) ) |
| 17 |
14 16
|
bitrd |
|- ( ph -> ( x e. ( F supp Z ) <-> ( x e. A /\ ( F ` x ) e. ( _V \ { Z } ) ) ) ) |
| 18 |
17
|
baibd |
|- ( ( ph /\ x e. A ) -> ( x e. ( F supp Z ) <-> ( F ` x ) e. ( _V \ { Z } ) ) ) |
| 19 |
18
|
notbid |
|- ( ( ph /\ x e. A ) -> ( -. x e. ( F supp Z ) <-> -. ( F ` x ) e. ( _V \ { Z } ) ) ) |
| 20 |
19
|
biimpd |
|- ( ( ph /\ x e. A ) -> ( -. x e. ( F supp Z ) -> -. ( F ` x ) e. ( _V \ { Z } ) ) ) |
| 21 |
20
|
expimpd |
|- ( ph -> ( ( x e. A /\ -. x e. ( F supp Z ) ) -> -. ( F ` x ) e. ( _V \ { Z } ) ) ) |
| 22 |
|
eldif |
|- ( x e. ( A \ ( F supp Z ) ) <-> ( x e. A /\ -. x e. ( F supp Z ) ) ) |
| 23 |
|
fvex |
|- ( F ` x ) e. _V |
| 24 |
|
eldifsn |
|- ( ( F ` x ) e. ( _V \ { Z } ) <-> ( ( F ` x ) e. _V /\ ( F ` x ) =/= Z ) ) |
| 25 |
23 24
|
mpbiran |
|- ( ( F ` x ) e. ( _V \ { Z } ) <-> ( F ` x ) =/= Z ) |
| 26 |
25
|
necon2bbii |
|- ( ( F ` x ) = Z <-> -. ( F ` x ) e. ( _V \ { Z } ) ) |
| 27 |
21 22 26
|
3imtr4g |
|- ( ph -> ( x e. ( A \ ( F supp Z ) ) -> ( F ` x ) = Z ) ) |
| 28 |
27
|
imp |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( F ` x ) = Z ) |
| 29 |
7 9 28 5
|
syl3anc |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> B = Z ) |
| 30 |
29 2
|
suppss2 |
|- ( ph -> ( ( x e. A |-> B ) supp Z ) C_ ( F supp Z ) ) |
| 31 |
6 30
|
eqsstrid |
|- ( ph -> ( G supp Z ) C_ ( F supp Z ) ) |