| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppcurry1.g |
|- G = ( x e. B |-> ( C F x ) ) |
| 2 |
|
fsuppcurry1.z |
|- ( ph -> Z e. U ) |
| 3 |
|
fsuppcurry1.a |
|- ( ph -> A e. V ) |
| 4 |
|
fsuppcurry1.b |
|- ( ph -> B e. W ) |
| 5 |
|
fsuppcurry1.f |
|- ( ph -> F Fn ( A X. B ) ) |
| 6 |
|
fsuppcurry1.c |
|- ( ph -> C e. A ) |
| 7 |
|
fsuppcurry1.1 |
|- ( ph -> F finSupp Z ) |
| 8 |
|
oveq2 |
|- ( x = y -> ( C F x ) = ( C F y ) ) |
| 9 |
8
|
cbvmptv |
|- ( x e. B |-> ( C F x ) ) = ( y e. B |-> ( C F y ) ) |
| 10 |
1 9
|
eqtri |
|- G = ( y e. B |-> ( C F y ) ) |
| 11 |
4
|
mptexd |
|- ( ph -> ( y e. B |-> ( C F y ) ) e. _V ) |
| 12 |
10 11
|
eqeltrid |
|- ( ph -> G e. _V ) |
| 13 |
1
|
funmpt2 |
|- Fun G |
| 14 |
13
|
a1i |
|- ( ph -> Fun G ) |
| 15 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
| 16 |
|
fofun |
|- ( 2nd : _V -onto-> _V -> Fun 2nd ) |
| 17 |
15 16
|
ax-mp |
|- Fun 2nd |
| 18 |
|
funres |
|- ( Fun 2nd -> Fun ( 2nd |` ( _V X. _V ) ) ) |
| 19 |
17 18
|
mp1i |
|- ( ph -> Fun ( 2nd |` ( _V X. _V ) ) ) |
| 20 |
7
|
fsuppimpd |
|- ( ph -> ( F supp Z ) e. Fin ) |
| 21 |
|
imafi |
|- ( ( Fun ( 2nd |` ( _V X. _V ) ) /\ ( F supp Z ) e. Fin ) -> ( ( 2nd |` ( _V X. _V ) ) " ( F supp Z ) ) e. Fin ) |
| 22 |
19 20 21
|
syl2anc |
|- ( ph -> ( ( 2nd |` ( _V X. _V ) ) " ( F supp Z ) ) e. Fin ) |
| 23 |
|
ovexd |
|- ( ( ph /\ y e. B ) -> ( C F y ) e. _V ) |
| 24 |
23 10
|
fmptd |
|- ( ph -> G : B --> _V ) |
| 25 |
|
eldif |
|- ( y e. ( B \ ( ( 2nd |` ( _V X. _V ) ) " ( F supp Z ) ) ) <-> ( y e. B /\ -. y e. ( ( 2nd |` ( _V X. _V ) ) " ( F supp Z ) ) ) ) |
| 26 |
6
|
ad2antrr |
|- ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) -> C e. A ) |
| 27 |
|
simplr |
|- ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) -> y e. B ) |
| 28 |
26 27
|
opelxpd |
|- ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) -> <. C , y >. e. ( A X. B ) ) |
| 29 |
|
df-ov |
|- ( C F y ) = ( F ` <. C , y >. ) |
| 30 |
|
ovexd |
|- ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) -> ( C F y ) e. _V ) |
| 31 |
1 8 27 30
|
fvmptd3 |
|- ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) -> ( G ` y ) = ( C F y ) ) |
| 32 |
|
simpr |
|- ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) -> -. ( G ` y ) = Z ) |
| 33 |
32
|
neqned |
|- ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) -> ( G ` y ) =/= Z ) |
| 34 |
31 33
|
eqnetrrd |
|- ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) -> ( C F y ) =/= Z ) |
| 35 |
29 34
|
eqnetrrid |
|- ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) -> ( F ` <. C , y >. ) =/= Z ) |
| 36 |
3 4
|
xpexd |
|- ( ph -> ( A X. B ) e. _V ) |
| 37 |
|
elsuppfn |
|- ( ( F Fn ( A X. B ) /\ ( A X. B ) e. _V /\ Z e. U ) -> ( <. C , y >. e. ( F supp Z ) <-> ( <. C , y >. e. ( A X. B ) /\ ( F ` <. C , y >. ) =/= Z ) ) ) |
| 38 |
5 36 2 37
|
syl3anc |
|- ( ph -> ( <. C , y >. e. ( F supp Z ) <-> ( <. C , y >. e. ( A X. B ) /\ ( F ` <. C , y >. ) =/= Z ) ) ) |
| 39 |
38
|
ad2antrr |
|- ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) -> ( <. C , y >. e. ( F supp Z ) <-> ( <. C , y >. e. ( A X. B ) /\ ( F ` <. C , y >. ) =/= Z ) ) ) |
| 40 |
28 35 39
|
mpbir2and |
|- ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) -> <. C , y >. e. ( F supp Z ) ) |
| 41 |
|
simpr |
|- ( ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) /\ z = <. C , y >. ) -> z = <. C , y >. ) |
| 42 |
41
|
fveq2d |
|- ( ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) /\ z = <. C , y >. ) -> ( ( 2nd |` ( _V X. _V ) ) ` z ) = ( ( 2nd |` ( _V X. _V ) ) ` <. C , y >. ) ) |
| 43 |
|
xpss |
|- ( A X. B ) C_ ( _V X. _V ) |
| 44 |
28
|
adantr |
|- ( ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) /\ z = <. C , y >. ) -> <. C , y >. e. ( A X. B ) ) |
| 45 |
43 44
|
sselid |
|- ( ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) /\ z = <. C , y >. ) -> <. C , y >. e. ( _V X. _V ) ) |
| 46 |
45
|
fvresd |
|- ( ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) /\ z = <. C , y >. ) -> ( ( 2nd |` ( _V X. _V ) ) ` <. C , y >. ) = ( 2nd ` <. C , y >. ) ) |
| 47 |
26
|
adantr |
|- ( ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) /\ z = <. C , y >. ) -> C e. A ) |
| 48 |
27
|
adantr |
|- ( ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) /\ z = <. C , y >. ) -> y e. B ) |
| 49 |
|
op2ndg |
|- ( ( C e. A /\ y e. B ) -> ( 2nd ` <. C , y >. ) = y ) |
| 50 |
47 48 49
|
syl2anc |
|- ( ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) /\ z = <. C , y >. ) -> ( 2nd ` <. C , y >. ) = y ) |
| 51 |
42 46 50
|
3eqtrd |
|- ( ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) /\ z = <. C , y >. ) -> ( ( 2nd |` ( _V X. _V ) ) ` z ) = y ) |
| 52 |
40 51
|
rspcedeq1vd |
|- ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) -> E. z e. ( F supp Z ) ( ( 2nd |` ( _V X. _V ) ) ` z ) = y ) |
| 53 |
|
fofn |
|- ( 2nd : _V -onto-> _V -> 2nd Fn _V ) |
| 54 |
|
fnresin |
|- ( 2nd Fn _V -> ( 2nd |` ( _V X. _V ) ) Fn ( _V i^i ( _V X. _V ) ) ) |
| 55 |
15 53 54
|
mp2b |
|- ( 2nd |` ( _V X. _V ) ) Fn ( _V i^i ( _V X. _V ) ) |
| 56 |
|
ssv |
|- ( _V X. _V ) C_ _V |
| 57 |
|
sseqin2 |
|- ( ( _V X. _V ) C_ _V <-> ( _V i^i ( _V X. _V ) ) = ( _V X. _V ) ) |
| 58 |
56 57
|
mpbi |
|- ( _V i^i ( _V X. _V ) ) = ( _V X. _V ) |
| 59 |
58
|
fneq2i |
|- ( ( 2nd |` ( _V X. _V ) ) Fn ( _V i^i ( _V X. _V ) ) <-> ( 2nd |` ( _V X. _V ) ) Fn ( _V X. _V ) ) |
| 60 |
55 59
|
mpbi |
|- ( 2nd |` ( _V X. _V ) ) Fn ( _V X. _V ) |
| 61 |
60
|
a1i |
|- ( ph -> ( 2nd |` ( _V X. _V ) ) Fn ( _V X. _V ) ) |
| 62 |
|
suppssdm |
|- ( F supp Z ) C_ dom F |
| 63 |
5
|
fndmd |
|- ( ph -> dom F = ( A X. B ) ) |
| 64 |
62 63
|
sseqtrid |
|- ( ph -> ( F supp Z ) C_ ( A X. B ) ) |
| 65 |
64 43
|
sstrdi |
|- ( ph -> ( F supp Z ) C_ ( _V X. _V ) ) |
| 66 |
61 65
|
fvelimabd |
|- ( ph -> ( y e. ( ( 2nd |` ( _V X. _V ) ) " ( F supp Z ) ) <-> E. z e. ( F supp Z ) ( ( 2nd |` ( _V X. _V ) ) ` z ) = y ) ) |
| 67 |
66
|
ad2antrr |
|- ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) -> ( y e. ( ( 2nd |` ( _V X. _V ) ) " ( F supp Z ) ) <-> E. z e. ( F supp Z ) ( ( 2nd |` ( _V X. _V ) ) ` z ) = y ) ) |
| 68 |
52 67
|
mpbird |
|- ( ( ( ph /\ y e. B ) /\ -. ( G ` y ) = Z ) -> y e. ( ( 2nd |` ( _V X. _V ) ) " ( F supp Z ) ) ) |
| 69 |
68
|
ex |
|- ( ( ph /\ y e. B ) -> ( -. ( G ` y ) = Z -> y e. ( ( 2nd |` ( _V X. _V ) ) " ( F supp Z ) ) ) ) |
| 70 |
69
|
con1d |
|- ( ( ph /\ y e. B ) -> ( -. y e. ( ( 2nd |` ( _V X. _V ) ) " ( F supp Z ) ) -> ( G ` y ) = Z ) ) |
| 71 |
70
|
impr |
|- ( ( ph /\ ( y e. B /\ -. y e. ( ( 2nd |` ( _V X. _V ) ) " ( F supp Z ) ) ) ) -> ( G ` y ) = Z ) |
| 72 |
25 71
|
sylan2b |
|- ( ( ph /\ y e. ( B \ ( ( 2nd |` ( _V X. _V ) ) " ( F supp Z ) ) ) ) -> ( G ` y ) = Z ) |
| 73 |
24 72
|
suppss |
|- ( ph -> ( G supp Z ) C_ ( ( 2nd |` ( _V X. _V ) ) " ( F supp Z ) ) ) |
| 74 |
|
suppssfifsupp |
|- ( ( ( G e. _V /\ Fun G /\ Z e. U ) /\ ( ( ( 2nd |` ( _V X. _V ) ) " ( F supp Z ) ) e. Fin /\ ( G supp Z ) C_ ( ( 2nd |` ( _V X. _V ) ) " ( F supp Z ) ) ) ) -> G finSupp Z ) |
| 75 |
12 14 2 22 73 74
|
syl32anc |
|- ( ph -> G finSupp Z ) |