| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppcurry1.g |
|
| 2 |
|
fsuppcurry1.z |
|
| 3 |
|
fsuppcurry1.a |
|
| 4 |
|
fsuppcurry1.b |
|
| 5 |
|
fsuppcurry1.f |
|
| 6 |
|
fsuppcurry1.c |
|
| 7 |
|
fsuppcurry1.1 |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
cbvmptv |
|
| 10 |
1 9
|
eqtri |
|
| 11 |
4
|
mptexd |
|
| 12 |
10 11
|
eqeltrid |
|
| 13 |
1
|
funmpt2 |
|
| 14 |
13
|
a1i |
|
| 15 |
|
fo2nd |
|
| 16 |
|
fofun |
|
| 17 |
15 16
|
ax-mp |
|
| 18 |
|
funres |
|
| 19 |
17 18
|
mp1i |
|
| 20 |
7
|
fsuppimpd |
|
| 21 |
|
imafi |
|
| 22 |
19 20 21
|
syl2anc |
|
| 23 |
|
ovexd |
|
| 24 |
23 10
|
fmptd |
|
| 25 |
|
eldif |
|
| 26 |
6
|
ad2antrr |
|
| 27 |
|
simplr |
|
| 28 |
26 27
|
opelxpd |
|
| 29 |
|
df-ov |
|
| 30 |
|
ovexd |
|
| 31 |
1 8 27 30
|
fvmptd3 |
|
| 32 |
|
simpr |
|
| 33 |
32
|
neqned |
|
| 34 |
31 33
|
eqnetrrd |
|
| 35 |
29 34
|
eqnetrrid |
|
| 36 |
3 4
|
xpexd |
|
| 37 |
|
elsuppfn |
|
| 38 |
5 36 2 37
|
syl3anc |
|
| 39 |
38
|
ad2antrr |
|
| 40 |
28 35 39
|
mpbir2and |
|
| 41 |
|
simpr |
|
| 42 |
41
|
fveq2d |
|
| 43 |
|
xpss |
|
| 44 |
28
|
adantr |
|
| 45 |
43 44
|
sselid |
|
| 46 |
45
|
fvresd |
|
| 47 |
26
|
adantr |
|
| 48 |
27
|
adantr |
|
| 49 |
|
op2ndg |
|
| 50 |
47 48 49
|
syl2anc |
|
| 51 |
42 46 50
|
3eqtrd |
|
| 52 |
40 51
|
rspcedeq1vd |
|
| 53 |
|
fofn |
|
| 54 |
|
fnresin |
|
| 55 |
15 53 54
|
mp2b |
|
| 56 |
|
ssv |
|
| 57 |
|
sseqin2 |
|
| 58 |
56 57
|
mpbi |
|
| 59 |
58
|
fneq2i |
|
| 60 |
55 59
|
mpbi |
|
| 61 |
60
|
a1i |
|
| 62 |
|
suppssdm |
|
| 63 |
5
|
fndmd |
|
| 64 |
62 63
|
sseqtrid |
|
| 65 |
64 43
|
sstrdi |
|
| 66 |
61 65
|
fvelimabd |
|
| 67 |
66
|
ad2antrr |
|
| 68 |
52 67
|
mpbird |
|
| 69 |
68
|
ex |
|
| 70 |
69
|
con1d |
|
| 71 |
70
|
impr |
|
| 72 |
25 71
|
sylan2b |
|
| 73 |
24 72
|
suppss |
|
| 74 |
|
suppssfifsupp |
|
| 75 |
12 14 2 22 73 74
|
syl32anc |
|