Step |
Hyp |
Ref |
Expression |
1 |
|
evls1fldgencl.1 |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
2 |
|
evls1fldgencl.2 |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
3 |
|
evls1fldgencl.3 |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
4 |
|
evls1fldgencl.4 |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
5 |
|
evls1fldgencl.5 |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
6 |
|
evls1fldgencl.6 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
7 |
|
evls1fldgencl.7 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
8 |
|
evls1fldgencl.8 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑈 ) |
9 |
|
eqid |
⊢ ( 𝐸 ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) |
10 |
5
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
11 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝐸 ) = ( .r ‘ 𝐸 ) |
14 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝐸 ) ) = ( .g ‘ ( mulGrp ‘ 𝐸 ) ) |
15 |
|
eqid |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) |
16 |
2 1 3 9 4 10 12 8 13 14 15
|
evls1fpws |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) = ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) = ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) |
19 |
18
|
mpteq2dv |
⊢ ( 𝑥 = 𝐴 → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) = ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) = ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) ) ) |
22 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) ) ∈ V ) |
23 |
16 21 7 22
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) = ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) ) ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) = ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) ) ) |
25 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
26 |
10
|
crngringd |
⊢ ( 𝜑 → 𝐸 ∈ Ring ) |
27 |
26
|
ringabld |
⊢ ( 𝜑 → 𝐸 ∈ Abel ) |
28 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → 𝐸 ∈ Abel ) |
29 |
|
nn0ex |
⊢ ℕ0 ∈ V |
30 |
29
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → ℕ0 ∈ V ) |
31 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) |
32 |
|
sdrgsubrg |
⊢ ( 𝑎 ∈ ( SubDRing ‘ 𝐸 ) → 𝑎 ∈ ( SubRing ‘ 𝐸 ) ) |
33 |
|
subrgsubg |
⊢ ( 𝑎 ∈ ( SubRing ‘ 𝐸 ) → 𝑎 ∈ ( SubGrp ‘ 𝐸 ) ) |
34 |
31 32 33
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → 𝑎 ∈ ( SubGrp ‘ 𝐸 ) ) |
35 |
32
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑎 ∈ ( SubRing ‘ 𝐸 ) ) |
36 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) |
37 |
36
|
unssad |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐹 ⊆ 𝑎 ) |
38 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐺 ∈ 𝑈 ) |
39 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
40 |
|
eqid |
⊢ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) |
41 |
15 4 3 40
|
coe1fvalcl |
⊢ ( ( 𝐺 ∈ 𝑈 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ∈ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
42 |
38 39 41
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ∈ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
43 |
1
|
sdrgss |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ⊆ 𝐵 ) |
44 |
6 43
|
syl |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) |
45 |
9 1
|
ressbas2 |
⊢ ( 𝐹 ⊆ 𝐵 → 𝐹 = ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
46 |
44 45
|
syl |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
47 |
46
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐹 = ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
48 |
42 47
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ∈ 𝐹 ) |
49 |
37 48
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ∈ 𝑎 ) |
50 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) |
51 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ 𝐵 ) |
52 |
36
|
unssbd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑘 ∈ ℕ0 ) → { 𝐴 } ⊆ 𝑎 ) |
53 |
|
snssg |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ 𝑎 ↔ { 𝐴 } ⊆ 𝑎 ) ) |
54 |
53
|
biimpar |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ { 𝐴 } ⊆ 𝑎 ) → 𝐴 ∈ 𝑎 ) |
55 |
51 52 54
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ 𝑎 ) |
56 |
|
eqid |
⊢ ( mulGrp ‘ 𝐸 ) = ( mulGrp ‘ 𝐸 ) |
57 |
56 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝐸 ) ) |
58 |
56 13
|
mgpplusg |
⊢ ( .r ‘ 𝐸 ) = ( +g ‘ ( mulGrp ‘ 𝐸 ) ) |
59 |
|
fvexd |
⊢ ( 𝑎 ∈ ( SubDRing ‘ 𝐸 ) → ( mulGrp ‘ 𝐸 ) ∈ V ) |
60 |
1
|
sdrgss |
⊢ ( 𝑎 ∈ ( SubDRing ‘ 𝐸 ) → 𝑎 ⊆ 𝐵 ) |
61 |
13
|
subrgmcl |
⊢ ( ( 𝑎 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 ∈ 𝑎 ) → ( 𝑥 ( .r ‘ 𝐸 ) 𝑦 ) ∈ 𝑎 ) |
62 |
32 61
|
syl3an1 |
⊢ ( ( 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 ∈ 𝑎 ) → ( 𝑥 ( .r ‘ 𝐸 ) 𝑦 ) ∈ 𝑎 ) |
63 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝐸 ) ) = ( 0g ‘ ( mulGrp ‘ 𝐸 ) ) |
64 |
|
eqid |
⊢ ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐸 ) |
65 |
56 64
|
ringidval |
⊢ ( 1r ‘ 𝐸 ) = ( 0g ‘ ( mulGrp ‘ 𝐸 ) ) |
66 |
65
|
eqcomi |
⊢ ( 0g ‘ ( mulGrp ‘ 𝐸 ) ) = ( 1r ‘ 𝐸 ) |
67 |
66
|
subrg1cl |
⊢ ( 𝑎 ∈ ( SubRing ‘ 𝐸 ) → ( 0g ‘ ( mulGrp ‘ 𝐸 ) ) ∈ 𝑎 ) |
68 |
32 67
|
syl |
⊢ ( 𝑎 ∈ ( SubDRing ‘ 𝐸 ) → ( 0g ‘ ( mulGrp ‘ 𝐸 ) ) ∈ 𝑎 ) |
69 |
57 14 58 59 60 62 63 68
|
mulgnn0subcl |
⊢ ( ( 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑎 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ∈ 𝑎 ) |
70 |
50 39 55 69
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ∈ 𝑎 ) |
71 |
13
|
subrgmcl |
⊢ ( ( 𝑎 ∈ ( SubRing ‘ 𝐸 ) ∧ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ∈ 𝑎 ∧ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ∈ 𝑎 ) → ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ∈ 𝑎 ) |
72 |
35 49 70 71
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ∈ 𝑎 ) |
73 |
72
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) : ℕ0 ⟶ 𝑎 ) |
74 |
30
|
mptexd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) ∈ V ) |
75 |
73
|
ffund |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) ) |
76 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → ( 0g ‘ 𝐸 ) ∈ V ) |
77 |
9
|
subrgring |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → ( 𝐸 ↾s 𝐹 ) ∈ Ring ) |
78 |
12 77
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Ring ) |
79 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → ( 𝐸 ↾s 𝐹 ) ∈ Ring ) |
80 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → 𝐺 ∈ 𝑈 ) |
81 |
|
eqid |
⊢ ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) = ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) |
82 |
3 4 81
|
mptcoe1fsupp |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ Ring ∧ 𝐺 ∈ 𝑈 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) finSupp ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
83 |
79 80 82
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) finSupp ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
84 |
|
ringmnd |
⊢ ( 𝐸 ∈ Ring → 𝐸 ∈ Mnd ) |
85 |
26 84
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ Mnd ) |
86 |
|
subrgsubg |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → 𝐹 ∈ ( SubGrp ‘ 𝐸 ) ) |
87 |
|
subgsubm |
⊢ ( 𝐹 ∈ ( SubGrp ‘ 𝐸 ) → 𝐹 ∈ ( SubMnd ‘ 𝐸 ) ) |
88 |
25
|
subm0cl |
⊢ ( 𝐹 ∈ ( SubMnd ‘ 𝐸 ) → ( 0g ‘ 𝐸 ) ∈ 𝐹 ) |
89 |
12 86 87 88
|
4syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) ∈ 𝐹 ) |
90 |
9 1 25
|
ress0g |
⊢ ( ( 𝐸 ∈ Mnd ∧ ( 0g ‘ 𝐸 ) ∈ 𝐹 ∧ 𝐹 ⊆ 𝐵 ) → ( 0g ‘ 𝐸 ) = ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
91 |
85 89 44 90
|
syl3anc |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) = ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
92 |
91
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → ( 0g ‘ 𝐸 ) = ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
93 |
83 92
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) finSupp ( 0g ‘ 𝐸 ) ) |
94 |
93
|
fsuppimpd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) supp ( 0g ‘ 𝐸 ) ) ∈ Fin ) |
95 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝐺 ) ‘ 𝑖 ) ) |
96 |
|
oveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) |
97 |
95 96
|
oveq12d |
⊢ ( 𝑘 = 𝑖 → ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) = ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) |
98 |
97
|
cbvmptv |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) |
99 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) |
100 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) |
101 |
99 42 100
|
fnmptd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) Fn ℕ0 ) |
102 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑖 ∈ ℕ0 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) ‘ 𝑖 ) = ( 0g ‘ 𝐸 ) ) → 𝑖 ∈ ℕ0 ) |
103 |
|
fvexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑖 ∈ ℕ0 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) ‘ 𝑖 ) = ( 0g ‘ 𝐸 ) ) → ( ( coe1 ‘ 𝐺 ) ‘ 𝑖 ) ∈ V ) |
104 |
100 95 102 103
|
fvmptd3 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑖 ∈ ℕ0 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) ‘ 𝑖 ) = ( 0g ‘ 𝐸 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) ‘ 𝑖 ) = ( ( coe1 ‘ 𝐺 ) ‘ 𝑖 ) ) |
105 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑖 ∈ ℕ0 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) ‘ 𝑖 ) = ( 0g ‘ 𝐸 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) ‘ 𝑖 ) = ( 0g ‘ 𝐸 ) ) |
106 |
104 105
|
eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑖 ∈ ℕ0 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) ‘ 𝑖 ) = ( 0g ‘ 𝐸 ) ) → ( ( coe1 ‘ 𝐺 ) ‘ 𝑖 ) = ( 0g ‘ 𝐸 ) ) |
107 |
106
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑖 ∈ ℕ0 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) ‘ 𝑖 ) = ( 0g ‘ 𝐸 ) ) → ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) = ( ( 0g ‘ 𝐸 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) |
108 |
26
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑖 ∈ ℕ0 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) ‘ 𝑖 ) = ( 0g ‘ 𝐸 ) ) → 𝐸 ∈ Ring ) |
109 |
56
|
ringmgp |
⊢ ( 𝐸 ∈ Ring → ( mulGrp ‘ 𝐸 ) ∈ Mnd ) |
110 |
26 109
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐸 ) ∈ Mnd ) |
111 |
110
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑖 ∈ ℕ0 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) ‘ 𝑖 ) = ( 0g ‘ 𝐸 ) ) → ( mulGrp ‘ 𝐸 ) ∈ Mnd ) |
112 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑖 ∈ ℕ0 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) ‘ 𝑖 ) = ( 0g ‘ 𝐸 ) ) → 𝐴 ∈ 𝐵 ) |
113 |
57 14 111 102 112
|
mulgnn0cld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑖 ∈ ℕ0 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) ‘ 𝑖 ) = ( 0g ‘ 𝐸 ) ) → ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ∈ 𝐵 ) |
114 |
1 13 25 108 113
|
ringlzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑖 ∈ ℕ0 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) ‘ 𝑖 ) = ( 0g ‘ 𝐸 ) ) → ( ( 0g ‘ 𝐸 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) = ( 0g ‘ 𝐸 ) ) |
115 |
107 114
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑖 ∈ ℕ0 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) ‘ 𝑖 ) = ( 0g ‘ 𝐸 ) ) → ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) = ( 0g ‘ 𝐸 ) ) |
116 |
115
|
3impa |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) ∧ 𝑖 ∈ ℕ0 ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) ‘ 𝑖 ) = ( 0g ‘ 𝐸 ) ) → ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) = ( 0g ‘ 𝐸 ) ) |
117 |
98 30 76 101 116
|
suppss3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) supp ( 0g ‘ 𝐸 ) ) ⊆ ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) supp ( 0g ‘ 𝐸 ) ) ) |
118 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) ∧ ( 0g ‘ 𝐸 ) ∈ V ) ∧ ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) supp ( 0g ‘ 𝐸 ) ) ∈ Fin ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) supp ( 0g ‘ 𝐸 ) ) ⊆ ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ) supp ( 0g ‘ 𝐸 ) ) ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) finSupp ( 0g ‘ 𝐸 ) ) |
119 |
74 75 76 94 117 118
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) finSupp ( 0g ‘ 𝐸 ) ) |
120 |
25 28 30 34 73 119
|
gsumsubgcl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐺 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝐴 ) ) ) ) ∈ 𝑎 ) |
121 |
24 120
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) ∧ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑎 ) |
122 |
121
|
ex |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ) → ( ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑎 ) ) |
123 |
122
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ( ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑎 ) ) |
124 |
|
fvex |
⊢ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) ∈ V |
125 |
124
|
elintrab |
⊢ ( ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) ∈ ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ∣ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 } ↔ ∀ 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ( ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑎 ) ) |
126 |
123 125
|
sylibr |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) ∈ ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ∣ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 } ) |
127 |
5
|
flddrngd |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
128 |
7
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ 𝐵 ) |
129 |
44 128
|
unssd |
⊢ ( 𝜑 → ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝐵 ) |
130 |
1 127 129
|
fldgenval |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) = ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐸 ) ∣ ( 𝐹 ∪ { 𝐴 } ) ⊆ 𝑎 } ) |
131 |
126 130
|
eleqtrrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |