Step |
Hyp |
Ref |
Expression |
1 |
|
evls1fldgencl.1 |
|
2 |
|
evls1fldgencl.2 |
|
3 |
|
evls1fldgencl.3 |
|
4 |
|
evls1fldgencl.4 |
|
5 |
|
evls1fldgencl.5 |
|
6 |
|
evls1fldgencl.6 |
|
7 |
|
evls1fldgencl.7 |
|
8 |
|
evls1fldgencl.8 |
|
9 |
|
eqid |
|
10 |
5
|
fldcrngd |
|
11 |
|
sdrgsubrg |
|
12 |
6 11
|
syl |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
2 1 3 9 4 10 12 8 13 14 15
|
evls1fpws |
|
17 |
|
oveq2 |
|
18 |
17
|
oveq2d |
|
19 |
18
|
mpteq2dv |
|
20 |
19
|
oveq2d |
|
21 |
20
|
adantl |
|
22 |
|
ovexd |
|
23 |
16 21 7 22
|
fvmptd |
|
24 |
23
|
ad2antrr |
|
25 |
|
eqid |
|
26 |
10
|
crngringd |
|
27 |
26
|
ringabld |
|
28 |
27
|
ad2antrr |
|
29 |
|
nn0ex |
|
30 |
29
|
a1i |
|
31 |
|
simplr |
|
32 |
|
sdrgsubrg |
|
33 |
|
subrgsubg |
|
34 |
31 32 33
|
3syl |
|
35 |
32
|
ad3antlr |
|
36 |
|
simplr |
|
37 |
36
|
unssad |
|
38 |
8
|
ad3antrrr |
|
39 |
|
simpr |
|
40 |
|
eqid |
|
41 |
15 4 3 40
|
coe1fvalcl |
|
42 |
38 39 41
|
syl2anc |
|
43 |
1
|
sdrgss |
|
44 |
6 43
|
syl |
|
45 |
9 1
|
ressbas2 |
|
46 |
44 45
|
syl |
|
47 |
46
|
ad3antrrr |
|
48 |
42 47
|
eleqtrrd |
|
49 |
37 48
|
sseldd |
|
50 |
|
simpllr |
|
51 |
7
|
ad3antrrr |
|
52 |
36
|
unssbd |
|
53 |
|
snssg |
|
54 |
53
|
biimpar |
|
55 |
51 52 54
|
syl2anc |
|
56 |
|
eqid |
|
57 |
56 1
|
mgpbas |
|
58 |
56 13
|
mgpplusg |
|
59 |
|
fvexd |
|
60 |
1
|
sdrgss |
|
61 |
13
|
subrgmcl |
|
62 |
32 61
|
syl3an1 |
|
63 |
|
eqid |
|
64 |
|
eqid |
|
65 |
56 64
|
ringidval |
|
66 |
65
|
eqcomi |
|
67 |
66
|
subrg1cl |
|
68 |
32 67
|
syl |
|
69 |
57 14 58 59 60 62 63 68
|
mulgnn0subcl |
|
70 |
50 39 55 69
|
syl3anc |
|
71 |
13
|
subrgmcl |
|
72 |
35 49 70 71
|
syl3anc |
|
73 |
72
|
fmpttd |
|
74 |
30
|
mptexd |
|
75 |
73
|
ffund |
|
76 |
|
fvexd |
|
77 |
9
|
subrgring |
|
78 |
12 77
|
syl |
|
79 |
78
|
ad2antrr |
|
80 |
8
|
ad2antrr |
|
81 |
|
eqid |
|
82 |
3 4 81
|
mptcoe1fsupp |
|
83 |
79 80 82
|
syl2anc |
|
84 |
|
ringmnd |
|
85 |
26 84
|
syl |
|
86 |
|
subrgsubg |
|
87 |
|
subgsubm |
|
88 |
25
|
subm0cl |
|
89 |
12 86 87 88
|
4syl |
|
90 |
9 1 25
|
ress0g |
|
91 |
85 89 44 90
|
syl3anc |
|
92 |
91
|
ad2antrr |
|
93 |
83 92
|
breqtrrd |
|
94 |
93
|
fsuppimpd |
|
95 |
|
fveq2 |
|
96 |
|
oveq1 |
|
97 |
95 96
|
oveq12d |
|
98 |
97
|
cbvmptv |
|
99 |
|
nfv |
|
100 |
|
eqid |
|
101 |
99 42 100
|
fnmptd |
|
102 |
|
simplr |
|
103 |
|
fvexd |
|
104 |
100 95 102 103
|
fvmptd3 |
|
105 |
|
simpr |
|
106 |
104 105
|
eqtr3d |
|
107 |
106
|
oveq1d |
|
108 |
26
|
ad4antr |
|
109 |
56
|
ringmgp |
|
110 |
26 109
|
syl |
|
111 |
110
|
ad4antr |
|
112 |
7
|
ad4antr |
|
113 |
57 14 111 102 112
|
mulgnn0cld |
|
114 |
1 13 25 108 113
|
ringlzd |
|
115 |
107 114
|
eqtrd |
|
116 |
115
|
3impa |
|
117 |
98 30 76 101 116
|
suppss3 |
|
118 |
|
suppssfifsupp |
|
119 |
74 75 76 94 117 118
|
syl32anc |
|
120 |
25 28 30 34 73 119
|
gsumsubgcl |
|
121 |
24 120
|
eqeltrd |
|
122 |
121
|
ex |
|
123 |
122
|
ralrimiva |
|
124 |
|
fvex |
|
125 |
124
|
elintrab |
|
126 |
123 125
|
sylibr |
|
127 |
5
|
flddrngd |
|
128 |
7
|
snssd |
|
129 |
44 128
|
unssd |
|
130 |
1 127 129
|
fldgenval |
|
131 |
126 130
|
eleqtrrd |
|