Metamath Proof Explorer


Theorem evls1fldgencl

Description: Closure of the subring polynomial evaluation in the field extention. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses evls1fldgencl.1 B = Base E
evls1fldgencl.2 O = E evalSub 1 F
evls1fldgencl.3 P = Poly 1 E 𝑠 F
evls1fldgencl.4 U = Base P
evls1fldgencl.5 φ E Field
evls1fldgencl.6 φ F SubDRing E
evls1fldgencl.7 φ A B
evls1fldgencl.8 φ G U
Assertion evls1fldgencl φ O G A E fldGen F A

Proof

Step Hyp Ref Expression
1 evls1fldgencl.1 B = Base E
2 evls1fldgencl.2 O = E evalSub 1 F
3 evls1fldgencl.3 P = Poly 1 E 𝑠 F
4 evls1fldgencl.4 U = Base P
5 evls1fldgencl.5 φ E Field
6 evls1fldgencl.6 φ F SubDRing E
7 evls1fldgencl.7 φ A B
8 evls1fldgencl.8 φ G U
9 eqid E 𝑠 F = E 𝑠 F
10 5 fldcrngd φ E CRing
11 sdrgsubrg F SubDRing E F SubRing E
12 6 11 syl φ F SubRing E
13 eqid E = E
14 eqid mulGrp E = mulGrp E
15 eqid coe 1 G = coe 1 G
16 2 1 3 9 4 10 12 8 13 14 15 evls1fpws φ O G = x B E k 0 coe 1 G k E k mulGrp E x
17 oveq2 x = A k mulGrp E x = k mulGrp E A
18 17 oveq2d x = A coe 1 G k E k mulGrp E x = coe 1 G k E k mulGrp E A
19 18 mpteq2dv x = A k 0 coe 1 G k E k mulGrp E x = k 0 coe 1 G k E k mulGrp E A
20 19 oveq2d x = A E k 0 coe 1 G k E k mulGrp E x = E k 0 coe 1 G k E k mulGrp E A
21 20 adantl φ x = A E k 0 coe 1 G k E k mulGrp E x = E k 0 coe 1 G k E k mulGrp E A
22 ovexd φ E k 0 coe 1 G k E k mulGrp E A V
23 16 21 7 22 fvmptd φ O G A = E k 0 coe 1 G k E k mulGrp E A
24 23 ad2antrr φ a SubDRing E F A a O G A = E k 0 coe 1 G k E k mulGrp E A
25 eqid 0 E = 0 E
26 10 crngringd φ E Ring
27 26 ringabld φ E Abel
28 27 ad2antrr φ a SubDRing E F A a E Abel
29 nn0ex 0 V
30 29 a1i φ a SubDRing E F A a 0 V
31 simplr φ a SubDRing E F A a a SubDRing E
32 sdrgsubrg a SubDRing E a SubRing E
33 subrgsubg a SubRing E a SubGrp E
34 31 32 33 3syl φ a SubDRing E F A a a SubGrp E
35 32 ad3antlr φ a SubDRing E F A a k 0 a SubRing E
36 simplr φ a SubDRing E F A a k 0 F A a
37 36 unssad φ a SubDRing E F A a k 0 F a
38 8 ad3antrrr φ a SubDRing E F A a k 0 G U
39 simpr φ a SubDRing E F A a k 0 k 0
40 eqid Base E 𝑠 F = Base E 𝑠 F
41 15 4 3 40 coe1fvalcl G U k 0 coe 1 G k Base E 𝑠 F
42 38 39 41 syl2anc φ a SubDRing E F A a k 0 coe 1 G k Base E 𝑠 F
43 1 sdrgss F SubDRing E F B
44 6 43 syl φ F B
45 9 1 ressbas2 F B F = Base E 𝑠 F
46 44 45 syl φ F = Base E 𝑠 F
47 46 ad3antrrr φ a SubDRing E F A a k 0 F = Base E 𝑠 F
48 42 47 eleqtrrd φ a SubDRing E F A a k 0 coe 1 G k F
49 37 48 sseldd φ a SubDRing E F A a k 0 coe 1 G k a
50 simpllr φ a SubDRing E F A a k 0 a SubDRing E
51 7 ad3antrrr φ a SubDRing E F A a k 0 A B
52 36 unssbd φ a SubDRing E F A a k 0 A a
53 snssg A B A a A a
54 53 biimpar A B A a A a
55 51 52 54 syl2anc φ a SubDRing E F A a k 0 A a
56 eqid mulGrp E = mulGrp E
57 56 1 mgpbas B = Base mulGrp E
58 56 13 mgpplusg E = + mulGrp E
59 fvexd a SubDRing E mulGrp E V
60 1 sdrgss a SubDRing E a B
61 13 subrgmcl a SubRing E x a y a x E y a
62 32 61 syl3an1 a SubDRing E x a y a x E y a
63 eqid 0 mulGrp E = 0 mulGrp E
64 eqid 1 E = 1 E
65 56 64 ringidval 1 E = 0 mulGrp E
66 65 eqcomi 0 mulGrp E = 1 E
67 66 subrg1cl a SubRing E 0 mulGrp E a
68 32 67 syl a SubDRing E 0 mulGrp E a
69 57 14 58 59 60 62 63 68 mulgnn0subcl a SubDRing E k 0 A a k mulGrp E A a
70 50 39 55 69 syl3anc φ a SubDRing E F A a k 0 k mulGrp E A a
71 13 subrgmcl a SubRing E coe 1 G k a k mulGrp E A a coe 1 G k E k mulGrp E A a
72 35 49 70 71 syl3anc φ a SubDRing E F A a k 0 coe 1 G k E k mulGrp E A a
73 72 fmpttd φ a SubDRing E F A a k 0 coe 1 G k E k mulGrp E A : 0 a
74 30 mptexd φ a SubDRing E F A a k 0 coe 1 G k E k mulGrp E A V
75 73 ffund φ a SubDRing E F A a Fun k 0 coe 1 G k E k mulGrp E A
76 fvexd φ a SubDRing E F A a 0 E V
77 9 subrgring F SubRing E E 𝑠 F Ring
78 12 77 syl φ E 𝑠 F Ring
79 78 ad2antrr φ a SubDRing E F A a E 𝑠 F Ring
80 8 ad2antrr φ a SubDRing E F A a G U
81 eqid 0 E 𝑠 F = 0 E 𝑠 F
82 3 4 81 mptcoe1fsupp E 𝑠 F Ring G U finSupp 0 E 𝑠 F k 0 coe 1 G k
83 79 80 82 syl2anc φ a SubDRing E F A a finSupp 0 E 𝑠 F k 0 coe 1 G k
84 ringmnd E Ring E Mnd
85 26 84 syl φ E Mnd
86 subrgsubg F SubRing E F SubGrp E
87 subgsubm F SubGrp E F SubMnd E
88 25 subm0cl F SubMnd E 0 E F
89 12 86 87 88 4syl φ 0 E F
90 9 1 25 ress0g E Mnd 0 E F F B 0 E = 0 E 𝑠 F
91 85 89 44 90 syl3anc φ 0 E = 0 E 𝑠 F
92 91 ad2antrr φ a SubDRing E F A a 0 E = 0 E 𝑠 F
93 83 92 breqtrrd φ a SubDRing E F A a finSupp 0 E k 0 coe 1 G k
94 93 fsuppimpd φ a SubDRing E F A a k 0 coe 1 G k supp 0 E Fin
95 fveq2 k = i coe 1 G k = coe 1 G i
96 oveq1 k = i k mulGrp E A = i mulGrp E A
97 95 96 oveq12d k = i coe 1 G k E k mulGrp E A = coe 1 G i E i mulGrp E A
98 97 cbvmptv k 0 coe 1 G k E k mulGrp E A = i 0 coe 1 G i E i mulGrp E A
99 nfv k φ a SubDRing E F A a
100 eqid k 0 coe 1 G k = k 0 coe 1 G k
101 99 42 100 fnmptd φ a SubDRing E F A a k 0 coe 1 G k Fn 0
102 simplr φ a SubDRing E F A a i 0 k 0 coe 1 G k i = 0 E i 0
103 fvexd φ a SubDRing E F A a i 0 k 0 coe 1 G k i = 0 E coe 1 G i V
104 100 95 102 103 fvmptd3 φ a SubDRing E F A a i 0 k 0 coe 1 G k i = 0 E k 0 coe 1 G k i = coe 1 G i
105 simpr φ a SubDRing E F A a i 0 k 0 coe 1 G k i = 0 E k 0 coe 1 G k i = 0 E
106 104 105 eqtr3d φ a SubDRing E F A a i 0 k 0 coe 1 G k i = 0 E coe 1 G i = 0 E
107 106 oveq1d φ a SubDRing E F A a i 0 k 0 coe 1 G k i = 0 E coe 1 G i E i mulGrp E A = 0 E E i mulGrp E A
108 26 ad4antr φ a SubDRing E F A a i 0 k 0 coe 1 G k i = 0 E E Ring
109 56 ringmgp E Ring mulGrp E Mnd
110 26 109 syl φ mulGrp E Mnd
111 110 ad4antr φ a SubDRing E F A a i 0 k 0 coe 1 G k i = 0 E mulGrp E Mnd
112 7 ad4antr φ a SubDRing E F A a i 0 k 0 coe 1 G k i = 0 E A B
113 57 14 111 102 112 mulgnn0cld φ a SubDRing E F A a i 0 k 0 coe 1 G k i = 0 E i mulGrp E A B
114 1 13 25 108 113 ringlzd φ a SubDRing E F A a i 0 k 0 coe 1 G k i = 0 E 0 E E i mulGrp E A = 0 E
115 107 114 eqtrd φ a SubDRing E F A a i 0 k 0 coe 1 G k i = 0 E coe 1 G i E i mulGrp E A = 0 E
116 115 3impa φ a SubDRing E F A a i 0 k 0 coe 1 G k i = 0 E coe 1 G i E i mulGrp E A = 0 E
117 98 30 76 101 116 suppss3 φ a SubDRing E F A a k 0 coe 1 G k E k mulGrp E A supp 0 E k 0 coe 1 G k supp 0 E
118 suppssfifsupp k 0 coe 1 G k E k mulGrp E A V Fun k 0 coe 1 G k E k mulGrp E A 0 E V k 0 coe 1 G k supp 0 E Fin k 0 coe 1 G k E k mulGrp E A supp 0 E k 0 coe 1 G k supp 0 E finSupp 0 E k 0 coe 1 G k E k mulGrp E A
119 74 75 76 94 117 118 syl32anc φ a SubDRing E F A a finSupp 0 E k 0 coe 1 G k E k mulGrp E A
120 25 28 30 34 73 119 gsumsubgcl φ a SubDRing E F A a E k 0 coe 1 G k E k mulGrp E A a
121 24 120 eqeltrd φ a SubDRing E F A a O G A a
122 121 ex φ a SubDRing E F A a O G A a
123 122 ralrimiva φ a SubDRing E F A a O G A a
124 fvex O G A V
125 124 elintrab O G A a SubDRing E | F A a a SubDRing E F A a O G A a
126 123 125 sylibr φ O G A a SubDRing E | F A a
127 5 flddrngd φ E DivRing
128 7 snssd φ A B
129 44 128 unssd φ F A B
130 1 127 129 fldgenval φ E fldGen F A = a SubDRing E | F A a
131 126 130 eleqtrrd φ O G A E fldGen F A