Metamath Proof Explorer


Theorem flddrngd

Description: A field is a division ring. (Contributed by SN, 17-Jan-2025)

Ref Expression
Hypothesis flddrngd.1 φRField
Assertion flddrngd φRDivRing

Proof

Step Hyp Ref Expression
1 flddrngd.1 φRField
2 isfld RFieldRDivRingRCRing
3 2 simplbi RFieldRDivRing
4 1 3 syl φRDivRing