| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extdg1id |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 1 ) → 𝐸 = 𝐹 ) |
| 2 |
|
oveq1 |
⊢ ( 𝐸 = 𝐹 → ( 𝐸 [:] 𝐹 ) = ( 𝐹 [:] 𝐹 ) ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐸 = 𝐹 ) → ( 𝐸 [:] 𝐹 ) = ( 𝐹 [:] 𝐹 ) ) |
| 4 |
|
fldextfld2 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 ∈ Field ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐸 = 𝐹 ) → 𝐹 ∈ Field ) |
| 6 |
|
extdgid |
⊢ ( 𝐹 ∈ Field → ( 𝐹 [:] 𝐹 ) = 1 ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐸 = 𝐹 ) → ( 𝐹 [:] 𝐹 ) = 1 ) |
| 8 |
3 7
|
eqtrd |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐸 = 𝐹 ) → ( 𝐸 [:] 𝐹 ) = 1 ) |
| 9 |
1 8
|
impbida |
⊢ ( 𝐸 /FldExt 𝐹 → ( ( 𝐸 [:] 𝐹 ) = 1 ↔ 𝐸 = 𝐹 ) ) |