| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextid |
⊢ ( 𝐸 ∈ Field → 𝐸 /FldExt 𝐸 ) |
| 2 |
|
extdgval |
⊢ ( 𝐸 /FldExt 𝐸 → ( 𝐸 [:] 𝐸 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐸 ) ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐸 ∈ Field → ( 𝐸 [:] 𝐸 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐸 ) ) ) ) |
| 4 |
|
isfld |
⊢ ( 𝐸 ∈ Field ↔ ( 𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing ) ) |
| 5 |
4
|
simplbi |
⊢ ( 𝐸 ∈ Field → 𝐸 ∈ DivRing ) |
| 6 |
|
rlmval |
⊢ ( ringLMod ‘ 𝐸 ) = ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐸 ) ) |
| 7 |
6
|
eqcomi |
⊢ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐸 ) ) = ( ringLMod ‘ 𝐸 ) |
| 8 |
7
|
rlmdim |
⊢ ( 𝐸 ∈ DivRing → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐸 ) ) ) = 1 ) |
| 9 |
5 8
|
syl |
⊢ ( 𝐸 ∈ Field → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐸 ) ) ) = 1 ) |
| 10 |
3 9
|
eqtrd |
⊢ ( 𝐸 ∈ Field → ( 𝐸 [:] 𝐸 ) = 1 ) |