| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐾 ) ) = ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐾 ) ) |
| 2 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) = ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) |
| 3 |
|
eqid |
⊢ ( ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ‘ ( Base ‘ 𝐾 ) ) = ( ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ‘ ( Base ‘ 𝐾 ) ) |
| 4 |
|
eqid |
⊢ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) |
| 5 |
|
eqid |
⊢ ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) = ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) |
| 6 |
|
simpl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐸 /FldExt 𝐹 ) |
| 7 |
|
fldextfld1 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐸 ∈ Field ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐸 ∈ Field ) |
| 9 |
|
isfld |
⊢ ( 𝐸 ∈ Field ↔ ( 𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing ) ) |
| 10 |
9
|
simplbi |
⊢ ( 𝐸 ∈ Field → 𝐸 ∈ DivRing ) |
| 11 |
8 10
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐸 ∈ DivRing ) |
| 12 |
|
fldextfld1 |
⊢ ( 𝐹 /FldExt 𝐾 → 𝐹 ∈ Field ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐹 ∈ Field ) |
| 14 |
|
brfldext |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ Field ) → ( 𝐸 /FldExt 𝐹 ↔ ( 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
| 15 |
8 13 14
|
syl2anc |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 /FldExt 𝐹 ↔ ( 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
| 16 |
6 15
|
mpbid |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ) |
| 17 |
16
|
simpld |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) |
| 18 |
|
isfld |
⊢ ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) ) |
| 19 |
18
|
simplbi |
⊢ ( 𝐹 ∈ Field → 𝐹 ∈ DivRing ) |
| 20 |
13 19
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐹 ∈ DivRing ) |
| 21 |
17 20
|
eqeltrrd |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ) |
| 22 |
|
fldexttr |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐸 /FldExt 𝐾 ) |
| 23 |
|
fldextfld2 |
⊢ ( 𝐹 /FldExt 𝐾 → 𝐾 ∈ Field ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐾 ∈ Field ) |
| 25 |
|
brfldext |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐾 ∈ Field ) → ( 𝐸 /FldExt 𝐾 ↔ ( 𝐾 = ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
| 26 |
8 24 25
|
syl2anc |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 /FldExt 𝐾 ↔ ( 𝐾 = ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
| 27 |
22 26
|
mpbid |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐾 = ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐸 ) ) ) |
| 28 |
27
|
simpld |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐾 = ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) ) |
| 29 |
|
isfld |
⊢ ( 𝐾 ∈ Field ↔ ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
| 30 |
29
|
simplbi |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ DivRing ) |
| 31 |
24 30
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐾 ∈ DivRing ) |
| 32 |
28 31
|
eqeltrrd |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) ∈ DivRing ) |
| 33 |
16
|
simprd |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) |
| 34 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 35 |
34
|
fldextsubrg |
⊢ ( 𝐹 /FldExt 𝐾 → ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐹 ) ) |
| 36 |
35
|
adantl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐹 ) ) |
| 37 |
17
|
fveq2d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( SubRing ‘ 𝐹 ) = ( SubRing ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 38 |
36 37
|
eleqtrd |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 39 |
1 2 3 4 5 11 21 32 33 38
|
fedgmul |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐾 ) ) ) = ( ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ·e ( dim ‘ ( ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ‘ ( Base ‘ 𝐾 ) ) ) ) ) |
| 40 |
|
extdgval |
⊢ ( 𝐸 /FldExt 𝐾 → ( 𝐸 [:] 𝐾 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 41 |
22 40
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 [:] 𝐾 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 42 |
|
extdgval |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐸 [:] 𝐹 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
| 43 |
6 42
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 [:] 𝐹 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
| 44 |
|
extdgval |
⊢ ( 𝐹 /FldExt 𝐾 → ( 𝐹 [:] 𝐾 ) = ( dim ‘ ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐹 [:] 𝐾 ) = ( dim ‘ ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 46 |
17
|
fveq2d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( subringAlg ‘ 𝐹 ) = ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 47 |
46
|
fveq1d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐾 ) ) = ( ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ‘ ( Base ‘ 𝐾 ) ) ) |
| 48 |
47
|
fveq2d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( dim ‘ ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐾 ) ) ) = ( dim ‘ ( ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 49 |
45 48
|
eqtrd |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐹 [:] 𝐾 ) = ( dim ‘ ( ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 50 |
43 49
|
oveq12d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( ( 𝐸 [:] 𝐹 ) ·e ( 𝐹 [:] 𝐾 ) ) = ( ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ·e ( dim ‘ ( ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ‘ ( Base ‘ 𝐾 ) ) ) ) ) |
| 51 |
39 41 50
|
3eqtr4d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 [:] 𝐾 ) = ( ( 𝐸 [:] 𝐹 ) ·e ( 𝐹 [:] 𝐾 ) ) ) |