Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐾 ) ) = ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐾 ) ) |
2 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) = ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) |
3 |
|
eqid |
⊢ ( ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ‘ ( Base ‘ 𝐾 ) ) = ( ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ‘ ( Base ‘ 𝐾 ) ) |
4 |
|
eqid |
⊢ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) |
5 |
|
eqid |
⊢ ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) = ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) |
6 |
|
simpl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐸 /FldExt 𝐹 ) |
7 |
|
fldextfld1 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐸 ∈ Field ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐸 ∈ Field ) |
9 |
|
isfld |
⊢ ( 𝐸 ∈ Field ↔ ( 𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing ) ) |
10 |
9
|
simplbi |
⊢ ( 𝐸 ∈ Field → 𝐸 ∈ DivRing ) |
11 |
8 10
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐸 ∈ DivRing ) |
12 |
|
fldextfld1 |
⊢ ( 𝐹 /FldExt 𝐾 → 𝐹 ∈ Field ) |
13 |
12
|
adantl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐹 ∈ Field ) |
14 |
|
brfldext |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ Field ) → ( 𝐸 /FldExt 𝐹 ↔ ( 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
15 |
8 13 14
|
syl2anc |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 /FldExt 𝐹 ↔ ( 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
16 |
6 15
|
mpbid |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ) |
17 |
16
|
simpld |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) |
18 |
|
isfld |
⊢ ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) ) |
19 |
18
|
simplbi |
⊢ ( 𝐹 ∈ Field → 𝐹 ∈ DivRing ) |
20 |
13 19
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐹 ∈ DivRing ) |
21 |
17 20
|
eqeltrrd |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ) |
22 |
|
fldexttr |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐸 /FldExt 𝐾 ) |
23 |
|
fldextfld2 |
⊢ ( 𝐹 /FldExt 𝐾 → 𝐾 ∈ Field ) |
24 |
23
|
adantl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐾 ∈ Field ) |
25 |
|
brfldext |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐾 ∈ Field ) → ( 𝐸 /FldExt 𝐾 ↔ ( 𝐾 = ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
26 |
8 24 25
|
syl2anc |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 /FldExt 𝐾 ↔ ( 𝐾 = ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
27 |
22 26
|
mpbid |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐾 = ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐸 ) ) ) |
28 |
27
|
simpld |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐾 = ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) ) |
29 |
|
isfld |
⊢ ( 𝐾 ∈ Field ↔ ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
30 |
29
|
simplbi |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ DivRing ) |
31 |
24 30
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐾 ∈ DivRing ) |
32 |
28 31
|
eqeltrrd |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) ∈ DivRing ) |
33 |
16
|
simprd |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) |
34 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
35 |
34
|
fldextsubrg |
⊢ ( 𝐹 /FldExt 𝐾 → ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐹 ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐹 ) ) |
37 |
17
|
fveq2d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( SubRing ‘ 𝐹 ) = ( SubRing ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ) |
38 |
36 37
|
eleqtrd |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ) |
39 |
1 2 3 4 5 11 21 32 33 38
|
fedgmul |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐾 ) ) ) = ( ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ·e ( dim ‘ ( ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ‘ ( Base ‘ 𝐾 ) ) ) ) ) |
40 |
|
extdgval |
⊢ ( 𝐸 /FldExt 𝐾 → ( 𝐸 [:] 𝐾 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
41 |
22 40
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 [:] 𝐾 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
42 |
|
extdgval |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐸 [:] 𝐹 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
43 |
6 42
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 [:] 𝐹 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
44 |
|
extdgval |
⊢ ( 𝐹 /FldExt 𝐾 → ( 𝐹 [:] 𝐾 ) = ( dim ‘ ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
45 |
44
|
adantl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐹 [:] 𝐾 ) = ( dim ‘ ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
46 |
17
|
fveq2d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( subringAlg ‘ 𝐹 ) = ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ) |
47 |
46
|
fveq1d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐾 ) ) = ( ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ‘ ( Base ‘ 𝐾 ) ) ) |
48 |
47
|
fveq2d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( dim ‘ ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐾 ) ) ) = ( dim ‘ ( ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
49 |
45 48
|
eqtrd |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐹 [:] 𝐾 ) = ( dim ‘ ( ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
50 |
43 49
|
oveq12d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( ( 𝐸 [:] 𝐹 ) ·e ( 𝐹 [:] 𝐾 ) ) = ( ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ·e ( dim ‘ ( ( subringAlg ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ‘ ( Base ‘ 𝐾 ) ) ) ) ) |
51 |
39 41 50
|
3eqtr4d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 [:] 𝐾 ) = ( ( 𝐸 [:] 𝐹 ) ·e ( 𝐹 [:] 𝐾 ) ) ) |