| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
simpl |
|
| 7 |
|
fldextfld1 |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
isfld |
|
| 10 |
9
|
simplbi |
|
| 11 |
8 10
|
syl |
|
| 12 |
|
fldextfld1 |
|
| 13 |
12
|
adantl |
|
| 14 |
|
brfldext |
|
| 15 |
8 13 14
|
syl2anc |
|
| 16 |
6 15
|
mpbid |
|
| 17 |
16
|
simpld |
|
| 18 |
|
isfld |
|
| 19 |
18
|
simplbi |
|
| 20 |
13 19
|
syl |
|
| 21 |
17 20
|
eqeltrrd |
|
| 22 |
|
fldexttr |
|
| 23 |
|
fldextfld2 |
|
| 24 |
23
|
adantl |
|
| 25 |
|
brfldext |
|
| 26 |
8 24 25
|
syl2anc |
|
| 27 |
22 26
|
mpbid |
|
| 28 |
27
|
simpld |
|
| 29 |
|
isfld |
|
| 30 |
29
|
simplbi |
|
| 31 |
24 30
|
syl |
|
| 32 |
28 31
|
eqeltrrd |
|
| 33 |
16
|
simprd |
|
| 34 |
|
eqid |
|
| 35 |
34
|
fldextsubrg |
|
| 36 |
35
|
adantl |
|
| 37 |
17
|
fveq2d |
|
| 38 |
36 37
|
eleqtrd |
|
| 39 |
1 2 3 4 5 11 21 32 33 38
|
fedgmul |
|
| 40 |
|
extdgval |
|
| 41 |
22 40
|
syl |
|
| 42 |
|
extdgval |
|
| 43 |
6 42
|
syl |
|
| 44 |
|
extdgval |
|
| 45 |
44
|
adantl |
|
| 46 |
17
|
fveq2d |
|
| 47 |
46
|
fveq1d |
|
| 48 |
47
|
fveq2d |
|
| 49 |
45 48
|
eqtrd |
|
| 50 |
43 49
|
oveq12d |
|
| 51 |
39 41 50
|
3eqtr4d |
|