Metamath Proof Explorer


Theorem finextfldext

Description: A finite field extension is a field extension. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypothesis finextfldext.1 φ E /FinExt F
Assertion finextfldext φ E /FldExt F

Proof

Step Hyp Ref Expression
1 finextfldext.1 φ E /FinExt F
2 df-finext /FinExt = e f | e /FldExt f e .:. f 0
3 2 relopabiv Rel /FinExt
4 3 brrelex1i E /FinExt F E V
5 1 4 syl φ E V
6 3 brrelex2i E /FinExt F F V
7 1 6 syl φ F V
8 breq12 e = E f = F e /FldExt f E /FldExt F
9 oveq12 e = E f = F e .:. f = E .:. F
10 9 eleq1d e = E f = F e .:. f 0 E .:. F 0
11 8 10 anbi12d e = E f = F e /FldExt f e .:. f 0 E /FldExt F E .:. F 0
12 11 2 brabga E V F V E /FinExt F E /FldExt F E .:. F 0
13 5 7 12 syl2anc φ E /FinExt F E /FldExt F E .:. F 0
14 1 13 mpbid φ E /FldExt F E .:. F 0
15 14 simpld φ E /FldExt F