Metamath Proof Explorer


Theorem finexttrb

Description: The extension E of K is finite if and only if E is finite over F and F is finite over K . Corollary 1.3 of Lang , p. 225. (Contributed by Thierry Arnoux, 30-Jul-2023)

Ref Expression
Assertion finexttrb E /FldExt F F /FldExt K E /FinExt K E /FinExt F F /FinExt K

Proof

Step Hyp Ref Expression
1 extdgmul E /FldExt F F /FldExt K E .:. K = E : F 𝑒 F : K
2 1 eleq1d E /FldExt F F /FldExt K E .:. K 0 E : F 𝑒 F : K 0
3 fldexttr E /FldExt F F /FldExt K E /FldExt K
4 brfinext E /FldExt K E /FinExt K E .:. K 0
5 3 4 syl E /FldExt F F /FldExt K E /FinExt K E .:. K 0
6 brfinext E /FldExt F E /FinExt F E .:. F 0
7 brfinext F /FldExt K F /FinExt K F .:. K 0
8 6 7 bi2anan9 E /FldExt F F /FldExt K E /FinExt F F /FinExt K E .:. F 0 F .:. K 0
9 extdgcl E /FldExt F E .:. F 0 *
10 9 adantr E /FldExt F F /FldExt K E .:. F 0 *
11 extdgcl F /FldExt K F .:. K 0 *
12 11 adantl E /FldExt F F /FldExt K F .:. K 0 *
13 extdggt0 E /FldExt F 0 < E .:. F
14 13 adantr E /FldExt F F /FldExt K 0 < E .:. F
15 14 gt0ne0d E /FldExt F F /FldExt K E .:. F 0
16 extdggt0 F /FldExt K 0 < F .:. K
17 16 adantl E /FldExt F F /FldExt K 0 < F .:. K
18 17 gt0ne0d E /FldExt F F /FldExt K F .:. K 0
19 nn0xmulclb E .:. F 0 * F .:. K 0 * E .:. F 0 F .:. K 0 E : F 𝑒 F : K 0 E .:. F 0 F .:. K 0
20 10 12 15 18 19 syl22anc E /FldExt F F /FldExt K E : F 𝑒 F : K 0 E .:. F 0 F .:. K 0
21 8 20 bitr4d E /FldExt F F /FldExt K E /FinExt F F /FinExt K E : F 𝑒 F : K 0
22 2 5 21 3bitr4d E /FldExt F F /FldExt K E /FinExt K E /FinExt F F /FinExt K