Step |
Hyp |
Ref |
Expression |
1 |
|
extdgmul |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E [:] K ) = ( ( E [:] F ) *e ( F [:] K ) ) ) |
2 |
1
|
eleq1d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( ( E [:] K ) e. NN0 <-> ( ( E [:] F ) *e ( F [:] K ) ) e. NN0 ) ) |
3 |
|
fldexttr |
|- ( ( E /FldExt F /\ F /FldExt K ) -> E /FldExt K ) |
4 |
|
brfinext |
|- ( E /FldExt K -> ( E /FinExt K <-> ( E [:] K ) e. NN0 ) ) |
5 |
3 4
|
syl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E /FinExt K <-> ( E [:] K ) e. NN0 ) ) |
6 |
|
brfinext |
|- ( E /FldExt F -> ( E /FinExt F <-> ( E [:] F ) e. NN0 ) ) |
7 |
|
brfinext |
|- ( F /FldExt K -> ( F /FinExt K <-> ( F [:] K ) e. NN0 ) ) |
8 |
6 7
|
bi2anan9 |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( ( E /FinExt F /\ F /FinExt K ) <-> ( ( E [:] F ) e. NN0 /\ ( F [:] K ) e. NN0 ) ) ) |
9 |
|
extdgcl |
|- ( E /FldExt F -> ( E [:] F ) e. NN0* ) |
10 |
9
|
adantr |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E [:] F ) e. NN0* ) |
11 |
|
extdgcl |
|- ( F /FldExt K -> ( F [:] K ) e. NN0* ) |
12 |
11
|
adantl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( F [:] K ) e. NN0* ) |
13 |
|
extdggt0 |
|- ( E /FldExt F -> 0 < ( E [:] F ) ) |
14 |
13
|
adantr |
|- ( ( E /FldExt F /\ F /FldExt K ) -> 0 < ( E [:] F ) ) |
15 |
14
|
gt0ne0d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E [:] F ) =/= 0 ) |
16 |
|
extdggt0 |
|- ( F /FldExt K -> 0 < ( F [:] K ) ) |
17 |
16
|
adantl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> 0 < ( F [:] K ) ) |
18 |
17
|
gt0ne0d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( F [:] K ) =/= 0 ) |
19 |
|
nn0xmulclb |
|- ( ( ( ( E [:] F ) e. NN0* /\ ( F [:] K ) e. NN0* ) /\ ( ( E [:] F ) =/= 0 /\ ( F [:] K ) =/= 0 ) ) -> ( ( ( E [:] F ) *e ( F [:] K ) ) e. NN0 <-> ( ( E [:] F ) e. NN0 /\ ( F [:] K ) e. NN0 ) ) ) |
20 |
10 12 15 18 19
|
syl22anc |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( ( ( E [:] F ) *e ( F [:] K ) ) e. NN0 <-> ( ( E [:] F ) e. NN0 /\ ( F [:] K ) e. NN0 ) ) ) |
21 |
8 20
|
bitr4d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( ( E /FinExt F /\ F /FinExt K ) <-> ( ( E [:] F ) *e ( F [:] K ) ) e. NN0 ) ) |
22 |
2 5 21
|
3bitr4d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E /FinExt K <-> ( E /FinExt F /\ F /FinExt K ) ) ) |