| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extdgmul |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E [:] K ) = ( ( E [:] F ) *e ( F [:] K ) ) ) |
| 2 |
1
|
eleq1d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( ( E [:] K ) e. NN0 <-> ( ( E [:] F ) *e ( F [:] K ) ) e. NN0 ) ) |
| 3 |
|
fldexttr |
|- ( ( E /FldExt F /\ F /FldExt K ) -> E /FldExt K ) |
| 4 |
|
brfinext |
|- ( E /FldExt K -> ( E /FinExt K <-> ( E [:] K ) e. NN0 ) ) |
| 5 |
3 4
|
syl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E /FinExt K <-> ( E [:] K ) e. NN0 ) ) |
| 6 |
|
brfinext |
|- ( E /FldExt F -> ( E /FinExt F <-> ( E [:] F ) e. NN0 ) ) |
| 7 |
|
brfinext |
|- ( F /FldExt K -> ( F /FinExt K <-> ( F [:] K ) e. NN0 ) ) |
| 8 |
6 7
|
bi2anan9 |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( ( E /FinExt F /\ F /FinExt K ) <-> ( ( E [:] F ) e. NN0 /\ ( F [:] K ) e. NN0 ) ) ) |
| 9 |
|
extdgcl |
|- ( E /FldExt F -> ( E [:] F ) e. NN0* ) |
| 10 |
9
|
adantr |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E [:] F ) e. NN0* ) |
| 11 |
|
extdgcl |
|- ( F /FldExt K -> ( F [:] K ) e. NN0* ) |
| 12 |
11
|
adantl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( F [:] K ) e. NN0* ) |
| 13 |
|
extdggt0 |
|- ( E /FldExt F -> 0 < ( E [:] F ) ) |
| 14 |
13
|
adantr |
|- ( ( E /FldExt F /\ F /FldExt K ) -> 0 < ( E [:] F ) ) |
| 15 |
14
|
gt0ne0d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E [:] F ) =/= 0 ) |
| 16 |
|
extdggt0 |
|- ( F /FldExt K -> 0 < ( F [:] K ) ) |
| 17 |
16
|
adantl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> 0 < ( F [:] K ) ) |
| 18 |
17
|
gt0ne0d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( F [:] K ) =/= 0 ) |
| 19 |
|
nn0xmulclb |
|- ( ( ( ( E [:] F ) e. NN0* /\ ( F [:] K ) e. NN0* ) /\ ( ( E [:] F ) =/= 0 /\ ( F [:] K ) =/= 0 ) ) -> ( ( ( E [:] F ) *e ( F [:] K ) ) e. NN0 <-> ( ( E [:] F ) e. NN0 /\ ( F [:] K ) e. NN0 ) ) ) |
| 20 |
10 12 15 18 19
|
syl22anc |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( ( ( E [:] F ) *e ( F [:] K ) ) e. NN0 <-> ( ( E [:] F ) e. NN0 /\ ( F [:] K ) e. NN0 ) ) ) |
| 21 |
8 20
|
bitr4d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( ( E /FinExt F /\ F /FinExt K ) <-> ( ( E [:] F ) *e ( F [:] K ) ) e. NN0 ) ) |
| 22 |
2 5 21
|
3bitr4d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E /FinExt K <-> ( E /FinExt F /\ F /FinExt K ) ) ) |