Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( E /FldExt F /\ F /FldExt K ) -> F /FldExt K ) |
2 |
|
simpl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> E /FldExt F ) |
3 |
|
fldextfld2 |
|- ( E /FldExt F -> F e. Field ) |
4 |
2 3
|
syl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> F e. Field ) |
5 |
|
fldextfld2 |
|- ( F /FldExt K -> K e. Field ) |
6 |
1 5
|
syl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> K e. Field ) |
7 |
|
brfldext |
|- ( ( F e. Field /\ K e. Field ) -> ( F /FldExt K <-> ( K = ( F |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` F ) ) ) ) |
8 |
4 6 7
|
syl2anc |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( F /FldExt K <-> ( K = ( F |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` F ) ) ) ) |
9 |
1 8
|
mpbid |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( K = ( F |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` F ) ) ) |
10 |
9
|
simpld |
|- ( ( E /FldExt F /\ F /FldExt K ) -> K = ( F |`s ( Base ` K ) ) ) |
11 |
|
fldextfld1 |
|- ( E /FldExt F -> E e. Field ) |
12 |
2 11
|
syl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> E e. Field ) |
13 |
|
brfldext |
|- ( ( E e. Field /\ F e. Field ) -> ( E /FldExt F <-> ( F = ( E |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` E ) ) ) ) |
14 |
12 4 13
|
syl2anc |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E /FldExt F <-> ( F = ( E |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` E ) ) ) ) |
15 |
2 14
|
mpbid |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( F = ( E |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` E ) ) ) |
16 |
15
|
simpld |
|- ( ( E /FldExt F /\ F /FldExt K ) -> F = ( E |`s ( Base ` F ) ) ) |
17 |
16
|
oveq1d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( F |`s ( Base ` K ) ) = ( ( E |`s ( Base ` F ) ) |`s ( Base ` K ) ) ) |
18 |
|
fvex |
|- ( Base ` F ) e. _V |
19 |
|
fvex |
|- ( Base ` K ) e. _V |
20 |
|
ressress |
|- ( ( ( Base ` F ) e. _V /\ ( Base ` K ) e. _V ) -> ( ( E |`s ( Base ` F ) ) |`s ( Base ` K ) ) = ( E |`s ( ( Base ` F ) i^i ( Base ` K ) ) ) ) |
21 |
18 19 20
|
mp2an |
|- ( ( E |`s ( Base ` F ) ) |`s ( Base ` K ) ) = ( E |`s ( ( Base ` F ) i^i ( Base ` K ) ) ) |
22 |
17 21
|
eqtrdi |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( F |`s ( Base ` K ) ) = ( E |`s ( ( Base ` F ) i^i ( Base ` K ) ) ) ) |
23 |
|
incom |
|- ( ( Base ` K ) i^i ( Base ` F ) ) = ( ( Base ` F ) i^i ( Base ` K ) ) |
24 |
9
|
simprd |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( Base ` K ) e. ( SubRing ` F ) ) |
25 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
26 |
25
|
subrgss |
|- ( ( Base ` K ) e. ( SubRing ` F ) -> ( Base ` K ) C_ ( Base ` F ) ) |
27 |
24 26
|
syl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( Base ` K ) C_ ( Base ` F ) ) |
28 |
|
df-ss |
|- ( ( Base ` K ) C_ ( Base ` F ) <-> ( ( Base ` K ) i^i ( Base ` F ) ) = ( Base ` K ) ) |
29 |
27 28
|
sylib |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( ( Base ` K ) i^i ( Base ` F ) ) = ( Base ` K ) ) |
30 |
23 29
|
eqtr3id |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( ( Base ` F ) i^i ( Base ` K ) ) = ( Base ` K ) ) |
31 |
30
|
oveq2d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E |`s ( ( Base ` F ) i^i ( Base ` K ) ) ) = ( E |`s ( Base ` K ) ) ) |
32 |
10 22 31
|
3eqtrd |
|- ( ( E /FldExt F /\ F /FldExt K ) -> K = ( E |`s ( Base ` K ) ) ) |
33 |
15
|
simprd |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( Base ` F ) e. ( SubRing ` E ) ) |
34 |
16
|
fveq2d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( SubRing ` F ) = ( SubRing ` ( E |`s ( Base ` F ) ) ) ) |
35 |
24 34
|
eleqtrd |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( Base ` K ) e. ( SubRing ` ( E |`s ( Base ` F ) ) ) ) |
36 |
|
eqid |
|- ( E |`s ( Base ` F ) ) = ( E |`s ( Base ` F ) ) |
37 |
36
|
subsubrg |
|- ( ( Base ` F ) e. ( SubRing ` E ) -> ( ( Base ` K ) e. ( SubRing ` ( E |`s ( Base ` F ) ) ) <-> ( ( Base ` K ) e. ( SubRing ` E ) /\ ( Base ` K ) C_ ( Base ` F ) ) ) ) |
38 |
37
|
simprbda |
|- ( ( ( Base ` F ) e. ( SubRing ` E ) /\ ( Base ` K ) e. ( SubRing ` ( E |`s ( Base ` F ) ) ) ) -> ( Base ` K ) e. ( SubRing ` E ) ) |
39 |
33 35 38
|
syl2anc |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( Base ` K ) e. ( SubRing ` E ) ) |
40 |
|
brfldext |
|- ( ( E e. Field /\ K e. Field ) -> ( E /FldExt K <-> ( K = ( E |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` E ) ) ) ) |
41 |
12 6 40
|
syl2anc |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E /FldExt K <-> ( K = ( E |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` E ) ) ) ) |
42 |
32 39 41
|
mpbir2and |
|- ( ( E /FldExt F /\ F /FldExt K ) -> E /FldExt K ) |