| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( E /FldExt F /\ F /FldExt K ) -> F /FldExt K ) |
| 2 |
|
simpl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> E /FldExt F ) |
| 3 |
|
fldextfld2 |
|- ( E /FldExt F -> F e. Field ) |
| 4 |
2 3
|
syl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> F e. Field ) |
| 5 |
|
fldextfld2 |
|- ( F /FldExt K -> K e. Field ) |
| 6 |
1 5
|
syl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> K e. Field ) |
| 7 |
|
brfldext |
|- ( ( F e. Field /\ K e. Field ) -> ( F /FldExt K <-> ( K = ( F |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` F ) ) ) ) |
| 8 |
4 6 7
|
syl2anc |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( F /FldExt K <-> ( K = ( F |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` F ) ) ) ) |
| 9 |
1 8
|
mpbid |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( K = ( F |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` F ) ) ) |
| 10 |
9
|
simpld |
|- ( ( E /FldExt F /\ F /FldExt K ) -> K = ( F |`s ( Base ` K ) ) ) |
| 11 |
|
fldextfld1 |
|- ( E /FldExt F -> E e. Field ) |
| 12 |
2 11
|
syl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> E e. Field ) |
| 13 |
|
brfldext |
|- ( ( E e. Field /\ F e. Field ) -> ( E /FldExt F <-> ( F = ( E |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` E ) ) ) ) |
| 14 |
12 4 13
|
syl2anc |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E /FldExt F <-> ( F = ( E |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` E ) ) ) ) |
| 15 |
2 14
|
mpbid |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( F = ( E |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` E ) ) ) |
| 16 |
15
|
simpld |
|- ( ( E /FldExt F /\ F /FldExt K ) -> F = ( E |`s ( Base ` F ) ) ) |
| 17 |
16
|
oveq1d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( F |`s ( Base ` K ) ) = ( ( E |`s ( Base ` F ) ) |`s ( Base ` K ) ) ) |
| 18 |
|
fvex |
|- ( Base ` F ) e. _V |
| 19 |
|
fvex |
|- ( Base ` K ) e. _V |
| 20 |
|
ressress |
|- ( ( ( Base ` F ) e. _V /\ ( Base ` K ) e. _V ) -> ( ( E |`s ( Base ` F ) ) |`s ( Base ` K ) ) = ( E |`s ( ( Base ` F ) i^i ( Base ` K ) ) ) ) |
| 21 |
18 19 20
|
mp2an |
|- ( ( E |`s ( Base ` F ) ) |`s ( Base ` K ) ) = ( E |`s ( ( Base ` F ) i^i ( Base ` K ) ) ) |
| 22 |
17 21
|
eqtrdi |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( F |`s ( Base ` K ) ) = ( E |`s ( ( Base ` F ) i^i ( Base ` K ) ) ) ) |
| 23 |
|
incom |
|- ( ( Base ` K ) i^i ( Base ` F ) ) = ( ( Base ` F ) i^i ( Base ` K ) ) |
| 24 |
9
|
simprd |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( Base ` K ) e. ( SubRing ` F ) ) |
| 25 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 26 |
25
|
subrgss |
|- ( ( Base ` K ) e. ( SubRing ` F ) -> ( Base ` K ) C_ ( Base ` F ) ) |
| 27 |
24 26
|
syl |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( Base ` K ) C_ ( Base ` F ) ) |
| 28 |
|
dfss2 |
|- ( ( Base ` K ) C_ ( Base ` F ) <-> ( ( Base ` K ) i^i ( Base ` F ) ) = ( Base ` K ) ) |
| 29 |
27 28
|
sylib |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( ( Base ` K ) i^i ( Base ` F ) ) = ( Base ` K ) ) |
| 30 |
23 29
|
eqtr3id |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( ( Base ` F ) i^i ( Base ` K ) ) = ( Base ` K ) ) |
| 31 |
30
|
oveq2d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E |`s ( ( Base ` F ) i^i ( Base ` K ) ) ) = ( E |`s ( Base ` K ) ) ) |
| 32 |
10 22 31
|
3eqtrd |
|- ( ( E /FldExt F /\ F /FldExt K ) -> K = ( E |`s ( Base ` K ) ) ) |
| 33 |
15
|
simprd |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( Base ` F ) e. ( SubRing ` E ) ) |
| 34 |
16
|
fveq2d |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( SubRing ` F ) = ( SubRing ` ( E |`s ( Base ` F ) ) ) ) |
| 35 |
24 34
|
eleqtrd |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( Base ` K ) e. ( SubRing ` ( E |`s ( Base ` F ) ) ) ) |
| 36 |
|
eqid |
|- ( E |`s ( Base ` F ) ) = ( E |`s ( Base ` F ) ) |
| 37 |
36
|
subsubrg |
|- ( ( Base ` F ) e. ( SubRing ` E ) -> ( ( Base ` K ) e. ( SubRing ` ( E |`s ( Base ` F ) ) ) <-> ( ( Base ` K ) e. ( SubRing ` E ) /\ ( Base ` K ) C_ ( Base ` F ) ) ) ) |
| 38 |
37
|
simprbda |
|- ( ( ( Base ` F ) e. ( SubRing ` E ) /\ ( Base ` K ) e. ( SubRing ` ( E |`s ( Base ` F ) ) ) ) -> ( Base ` K ) e. ( SubRing ` E ) ) |
| 39 |
33 35 38
|
syl2anc |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( Base ` K ) e. ( SubRing ` E ) ) |
| 40 |
|
brfldext |
|- ( ( E e. Field /\ K e. Field ) -> ( E /FldExt K <-> ( K = ( E |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` E ) ) ) ) |
| 41 |
12 6 40
|
syl2anc |
|- ( ( E /FldExt F /\ F /FldExt K ) -> ( E /FldExt K <-> ( K = ( E |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` E ) ) ) ) |
| 42 |
32 39 41
|
mpbir2and |
|- ( ( E /FldExt F /\ F /FldExt K ) -> E /FldExt K ) |