Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
2 |
1
|
ressid |
|- ( F e. Field -> ( F |`s ( Base ` F ) ) = F ) |
3 |
2
|
eqcomd |
|- ( F e. Field -> F = ( F |`s ( Base ` F ) ) ) |
4 |
|
isfld |
|- ( F e. Field <-> ( F e. DivRing /\ F e. CRing ) ) |
5 |
4
|
simplbi |
|- ( F e. Field -> F e. DivRing ) |
6 |
|
drngring |
|- ( F e. DivRing -> F e. Ring ) |
7 |
1
|
subrgid |
|- ( F e. Ring -> ( Base ` F ) e. ( SubRing ` F ) ) |
8 |
5 6 7
|
3syl |
|- ( F e. Field -> ( Base ` F ) e. ( SubRing ` F ) ) |
9 |
|
brfldext |
|- ( ( F e. Field /\ F e. Field ) -> ( F /FldExt F <-> ( F = ( F |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` F ) ) ) ) |
10 |
9
|
anidms |
|- ( F e. Field -> ( F /FldExt F <-> ( F = ( F |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` F ) ) ) ) |
11 |
3 8 10
|
mpbir2and |
|- ( F e. Field -> F /FldExt F ) |