Step |
Hyp |
Ref |
Expression |
1 |
|
fldextid |
|- ( E e. Field -> E /FldExt E ) |
2 |
|
extdgval |
|- ( E /FldExt E -> ( E [:] E ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` E ) ) ) ) |
3 |
1 2
|
syl |
|- ( E e. Field -> ( E [:] E ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` E ) ) ) ) |
4 |
|
isfld |
|- ( E e. Field <-> ( E e. DivRing /\ E e. CRing ) ) |
5 |
4
|
simplbi |
|- ( E e. Field -> E e. DivRing ) |
6 |
|
rlmval |
|- ( ringLMod ` E ) = ( ( subringAlg ` E ) ` ( Base ` E ) ) |
7 |
6
|
eqcomi |
|- ( ( subringAlg ` E ) ` ( Base ` E ) ) = ( ringLMod ` E ) |
8 |
7
|
rlmdim |
|- ( E e. DivRing -> ( dim ` ( ( subringAlg ` E ) ` ( Base ` E ) ) ) = 1 ) |
9 |
5 8
|
syl |
|- ( E e. Field -> ( dim ` ( ( subringAlg ` E ) ` ( Base ` E ) ) ) = 1 ) |
10 |
3 9
|
eqtrd |
|- ( E e. Field -> ( E [:] E ) = 1 ) |