Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Field Extensions
extdgid
Next ⟩
extdgmul
Metamath Proof Explorer
Ascii
Unicode
Theorem
extdgid
Description:
A trivial field extension has degree one.
(Contributed by
Thierry Arnoux
, 4-Aug-2023)
Ref
Expression
Assertion
extdgid
⊢
E
∈
Field
→
E
.
:
.
E
=
1
Proof
Step
Hyp
Ref
Expression
1
fldextid
⊢
E
∈
Field
→
E
/
FldExt
E
2
extdgval
⊢
E
/
FldExt
E
→
E
.
:
.
E
=
dim
⁡
subringAlg
⁡
E
⁡
Base
E
3
1
2
syl
⊢
E
∈
Field
→
E
.
:
.
E
=
dim
⁡
subringAlg
⁡
E
⁡
Base
E
4
isfld
⊢
E
∈
Field
↔
E
∈
DivRing
∧
E
∈
CRing
5
4
simplbi
⊢
E
∈
Field
→
E
∈
DivRing
6
rlmval
⊢
ringLMod
⁡
E
=
subringAlg
⁡
E
⁡
Base
E
7
6
eqcomi
⊢
subringAlg
⁡
E
⁡
Base
E
=
ringLMod
⁡
E
8
7
rlmdim
⊢
E
∈
DivRing
→
dim
⁡
subringAlg
⁡
E
⁡
Base
E
=
1
9
5
8
syl
⊢
E
∈
Field
→
dim
⁡
subringAlg
⁡
E
⁡
Base
E
=
1
10
3
9
eqtrd
⊢
E
∈
Field
→
E
.
:
.
E
=
1