Metamath Proof Explorer


Theorem extdgid

Description: A trivial field extension has degree one. (Contributed by Thierry Arnoux, 4-Aug-2023)

Ref Expression
Assertion extdgid E Field E .:. E = 1

Proof

Step Hyp Ref Expression
1 fldextid E Field E /FldExt E
2 extdgval E /FldExt E E .:. E = dim subringAlg E Base E
3 1 2 syl E Field E .:. E = dim subringAlg E Base E
4 isfld E Field E DivRing E CRing
5 4 simplbi E Field E DivRing
6 rlmval ringLMod E = subringAlg E Base E
7 6 eqcomi subringAlg E Base E = ringLMod E
8 7 rlmdim E DivRing dim subringAlg E Base E = 1
9 5 8 syl E Field dim subringAlg E Base E = 1
10 3 9 eqtrd E Field E .:. E = 1