| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐹 /FldExt 𝐾 ) |
| 2 |
|
simpl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐸 /FldExt 𝐹 ) |
| 3 |
|
fldextfld2 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 ∈ Field ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐹 ∈ Field ) |
| 5 |
|
fldextfld2 |
⊢ ( 𝐹 /FldExt 𝐾 → 𝐾 ∈ Field ) |
| 6 |
1 5
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐾 ∈ Field ) |
| 7 |
|
brfldext |
⊢ ( ( 𝐹 ∈ Field ∧ 𝐾 ∈ Field ) → ( 𝐹 /FldExt 𝐾 ↔ ( 𝐾 = ( 𝐹 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐹 ) ) ) ) |
| 8 |
4 6 7
|
syl2anc |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐹 /FldExt 𝐾 ↔ ( 𝐾 = ( 𝐹 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐹 ) ) ) ) |
| 9 |
1 8
|
mpbid |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐾 = ( 𝐹 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐹 ) ) ) |
| 10 |
9
|
simpld |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐾 = ( 𝐹 ↾s ( Base ‘ 𝐾 ) ) ) |
| 11 |
|
fldextfld1 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐸 ∈ Field ) |
| 12 |
2 11
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐸 ∈ Field ) |
| 13 |
|
brfldext |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ Field ) → ( 𝐸 /FldExt 𝐹 ↔ ( 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
| 14 |
12 4 13
|
syl2anc |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 /FldExt 𝐹 ↔ ( 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
| 15 |
2 14
|
mpbid |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) ) |
| 16 |
15
|
simpld |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) |
| 17 |
16
|
oveq1d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐹 ↾s ( Base ‘ 𝐾 ) ) = ( ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ↾s ( Base ‘ 𝐾 ) ) ) |
| 18 |
|
fvex |
⊢ ( Base ‘ 𝐹 ) ∈ V |
| 19 |
|
fvex |
⊢ ( Base ‘ 𝐾 ) ∈ V |
| 20 |
|
ressress |
⊢ ( ( ( Base ‘ 𝐹 ) ∈ V ∧ ( Base ‘ 𝐾 ) ∈ V ) → ( ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ↾s ( Base ‘ 𝐾 ) ) = ( 𝐸 ↾s ( ( Base ‘ 𝐹 ) ∩ ( Base ‘ 𝐾 ) ) ) ) |
| 21 |
18 19 20
|
mp2an |
⊢ ( ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ↾s ( Base ‘ 𝐾 ) ) = ( 𝐸 ↾s ( ( Base ‘ 𝐹 ) ∩ ( Base ‘ 𝐾 ) ) ) |
| 22 |
17 21
|
eqtrdi |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐹 ↾s ( Base ‘ 𝐾 ) ) = ( 𝐸 ↾s ( ( Base ‘ 𝐹 ) ∩ ( Base ‘ 𝐾 ) ) ) ) |
| 23 |
|
incom |
⊢ ( ( Base ‘ 𝐾 ) ∩ ( Base ‘ 𝐹 ) ) = ( ( Base ‘ 𝐹 ) ∩ ( Base ‘ 𝐾 ) ) |
| 24 |
9
|
simprd |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐹 ) ) |
| 25 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 26 |
25
|
subrgss |
⊢ ( ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐹 ) → ( Base ‘ 𝐾 ) ⊆ ( Base ‘ 𝐹 ) ) |
| 27 |
24 26
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( Base ‘ 𝐾 ) ⊆ ( Base ‘ 𝐹 ) ) |
| 28 |
|
dfss2 |
⊢ ( ( Base ‘ 𝐾 ) ⊆ ( Base ‘ 𝐹 ) ↔ ( ( Base ‘ 𝐾 ) ∩ ( Base ‘ 𝐹 ) ) = ( Base ‘ 𝐾 ) ) |
| 29 |
27 28
|
sylib |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( ( Base ‘ 𝐾 ) ∩ ( Base ‘ 𝐹 ) ) = ( Base ‘ 𝐾 ) ) |
| 30 |
23 29
|
eqtr3id |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( ( Base ‘ 𝐹 ) ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ 𝐾 ) ) |
| 31 |
30
|
oveq2d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 ↾s ( ( Base ‘ 𝐹 ) ∩ ( Base ‘ 𝐾 ) ) ) = ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) ) |
| 32 |
10 22 31
|
3eqtrd |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐾 = ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) ) |
| 33 |
15
|
simprd |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ) |
| 34 |
16
|
fveq2d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( SubRing ‘ 𝐹 ) = ( SubRing ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 35 |
24 34
|
eleqtrd |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 36 |
|
eqid |
⊢ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) |
| 37 |
36
|
subsubrg |
⊢ ( ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) → ( ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ↔ ( ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐸 ) ∧ ( Base ‘ 𝐾 ) ⊆ ( Base ‘ 𝐹 ) ) ) ) |
| 38 |
37
|
simprbda |
⊢ ( ( ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐸 ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) ) → ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐸 ) ) |
| 39 |
33 35 38
|
syl2anc |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐸 ) ) |
| 40 |
|
brfldext |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐾 ∈ Field ) → ( 𝐸 /FldExt 𝐾 ↔ ( 𝐾 = ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
| 41 |
12 6 40
|
syl2anc |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 /FldExt 𝐾 ↔ ( 𝐾 = ( 𝐸 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
| 42 |
32 39 41
|
mpbir2and |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐸 /FldExt 𝐾 ) |