Step |
Hyp |
Ref |
Expression |
1 |
|
extdgmul |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 [:] 𝐾 ) = ( ( 𝐸 [:] 𝐹 ) ·e ( 𝐹 [:] 𝐾 ) ) ) |
2 |
1
|
eleq1d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( ( 𝐸 [:] 𝐾 ) ∈ ℕ0 ↔ ( ( 𝐸 [:] 𝐹 ) ·e ( 𝐹 [:] 𝐾 ) ) ∈ ℕ0 ) ) |
3 |
|
fldexttr |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 𝐸 /FldExt 𝐾 ) |
4 |
|
brfinext |
⊢ ( 𝐸 /FldExt 𝐾 → ( 𝐸 /FinExt 𝐾 ↔ ( 𝐸 [:] 𝐾 ) ∈ ℕ0 ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 /FinExt 𝐾 ↔ ( 𝐸 [:] 𝐾 ) ∈ ℕ0 ) ) |
6 |
|
brfinext |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐸 /FinExt 𝐹 ↔ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) ) |
7 |
|
brfinext |
⊢ ( 𝐹 /FldExt 𝐾 → ( 𝐹 /FinExt 𝐾 ↔ ( 𝐹 [:] 𝐾 ) ∈ ℕ0 ) ) |
8 |
6 7
|
bi2anan9 |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( ( 𝐸 /FinExt 𝐹 ∧ 𝐹 /FinExt 𝐾 ) ↔ ( ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ∧ ( 𝐹 [:] 𝐾 ) ∈ ℕ0 ) ) ) |
9 |
|
extdgcl |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐸 [:] 𝐹 ) ∈ ℕ0* ) |
10 |
9
|
adantr |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 [:] 𝐹 ) ∈ ℕ0* ) |
11 |
|
extdgcl |
⊢ ( 𝐹 /FldExt 𝐾 → ( 𝐹 [:] 𝐾 ) ∈ ℕ0* ) |
12 |
11
|
adantl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐹 [:] 𝐾 ) ∈ ℕ0* ) |
13 |
|
extdggt0 |
⊢ ( 𝐸 /FldExt 𝐹 → 0 < ( 𝐸 [:] 𝐹 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 0 < ( 𝐸 [:] 𝐹 ) ) |
15 |
14
|
gt0ne0d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 [:] 𝐹 ) ≠ 0 ) |
16 |
|
extdggt0 |
⊢ ( 𝐹 /FldExt 𝐾 → 0 < ( 𝐹 [:] 𝐾 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → 0 < ( 𝐹 [:] 𝐾 ) ) |
18 |
17
|
gt0ne0d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐹 [:] 𝐾 ) ≠ 0 ) |
19 |
|
nn0xmulclb |
⊢ ( ( ( ( 𝐸 [:] 𝐹 ) ∈ ℕ0* ∧ ( 𝐹 [:] 𝐾 ) ∈ ℕ0* ) ∧ ( ( 𝐸 [:] 𝐹 ) ≠ 0 ∧ ( 𝐹 [:] 𝐾 ) ≠ 0 ) ) → ( ( ( 𝐸 [:] 𝐹 ) ·e ( 𝐹 [:] 𝐾 ) ) ∈ ℕ0 ↔ ( ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ∧ ( 𝐹 [:] 𝐾 ) ∈ ℕ0 ) ) ) |
20 |
10 12 15 18 19
|
syl22anc |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( ( ( 𝐸 [:] 𝐹 ) ·e ( 𝐹 [:] 𝐾 ) ) ∈ ℕ0 ↔ ( ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ∧ ( 𝐹 [:] 𝐾 ) ∈ ℕ0 ) ) ) |
21 |
8 20
|
bitr4d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( ( 𝐸 /FinExt 𝐹 ∧ 𝐹 /FinExt 𝐾 ) ↔ ( ( 𝐸 [:] 𝐹 ) ·e ( 𝐹 [:] 𝐾 ) ) ∈ ℕ0 ) ) |
22 |
2 5 21
|
3bitr4d |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ 𝐹 /FldExt 𝐾 ) → ( 𝐸 /FinExt 𝐾 ↔ ( 𝐸 /FinExt 𝐹 ∧ 𝐹 /FinExt 𝐾 ) ) ) |