Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) → ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) |
2 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐴 = +∞ ) → 𝐴 = +∞ ) |
3 |
2
|
oveq1d |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐴 = +∞ ) → ( 𝐴 ·e 𝐵 ) = ( +∞ ·e 𝐵 ) ) |
4 |
|
xnn0xr |
⊢ ( 𝐵 ∈ ℕ0* → 𝐵 ∈ ℝ* ) |
5 |
4
|
ad5antlr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐴 = +∞ ) → 𝐵 ∈ ℝ* ) |
6 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐴 = +∞ ) → 𝐵 ∈ ℕ0* ) |
7 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) |
8 |
7
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐴 = +∞ ) → 𝐵 ≠ 0 ) |
9 |
|
xnn0gt0 |
⊢ ( ( 𝐵 ∈ ℕ0* ∧ 𝐵 ≠ 0 ) → 0 < 𝐵 ) |
10 |
6 8 9
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐴 = +∞ ) → 0 < 𝐵 ) |
11 |
|
xmulpnf2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) → ( +∞ ·e 𝐵 ) = +∞ ) |
12 |
5 10 11
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐴 = +∞ ) → ( +∞ ·e 𝐵 ) = +∞ ) |
13 |
|
pnfnre2 |
⊢ ¬ +∞ ∈ ℝ |
14 |
|
nn0re |
⊢ ( +∞ ∈ ℕ0 → +∞ ∈ ℝ ) |
15 |
13 14
|
mto |
⊢ ¬ +∞ ∈ ℕ0 |
16 |
15
|
a1i |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐴 = +∞ ) → ¬ +∞ ∈ ℕ0 ) |
17 |
12 16
|
eqneltrd |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐴 = +∞ ) → ¬ ( +∞ ·e 𝐵 ) ∈ ℕ0 ) |
18 |
3 17
|
eqneltrd |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐴 = +∞ ) → ¬ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) |
19 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐵 = +∞ ) → 𝐵 = +∞ ) |
20 |
19
|
oveq2d |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e 𝐵 ) = ( 𝐴 ·e +∞ ) ) |
21 |
|
xnn0xr |
⊢ ( 𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ* ) |
22 |
21
|
ad5antr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐵 = +∞ ) → 𝐴 ∈ ℝ* ) |
23 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐵 = +∞ ) → 𝐴 ∈ ℕ0* ) |
24 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → 𝐴 ≠ 0 ) |
25 |
24
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐵 = +∞ ) → 𝐴 ≠ 0 ) |
26 |
|
xnn0gt0 |
⊢ ( ( 𝐴 ∈ ℕ0* ∧ 𝐴 ≠ 0 ) → 0 < 𝐴 ) |
27 |
23 25 26
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐵 = +∞ ) → 0 < 𝐴 ) |
28 |
|
xmulpnf1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) |
29 |
22 27 28
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e +∞ ) = +∞ ) |
30 |
15
|
a1i |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐵 = +∞ ) → ¬ +∞ ∈ ℕ0 ) |
31 |
29 30
|
eqneltrd |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐵 = +∞ ) → ¬ ( 𝐴 ·e +∞ ) ∈ ℕ0 ) |
32 |
20 31
|
eqneltrd |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ∧ 𝐵 = +∞ ) → ¬ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) |
33 |
|
xnn0nnn0pnf |
⊢ ( ( 𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0 ) → 𝐴 = +∞ ) |
34 |
33
|
ad5ant15 |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ 𝐴 ∈ ℕ0 ) → 𝐴 = +∞ ) |
35 |
34
|
ex |
⊢ ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) → ( ¬ 𝐴 ∈ ℕ0 → 𝐴 = +∞ ) ) |
36 |
|
xnn0nnn0pnf |
⊢ ( ( 𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0 ) → 𝐵 = +∞ ) |
37 |
36
|
ad5ant25 |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ 𝐵 ∈ ℕ0 ) → 𝐵 = +∞ ) |
38 |
37
|
ex |
⊢ ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) → ( ¬ 𝐵 ∈ ℕ0 → 𝐵 = +∞ ) ) |
39 |
35 38
|
orim12d |
⊢ ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) → ( ( ¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0 ) → ( 𝐴 = +∞ ∨ 𝐵 = +∞ ) ) ) |
40 |
|
pm3.13 |
⊢ ( ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0 ) ) |
41 |
39 40
|
impel |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) → ( 𝐴 = +∞ ∨ 𝐵 = +∞ ) ) |
42 |
18 32 41
|
mpjaodan |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) ∧ ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) → ¬ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) |
43 |
1 42
|
condan |
⊢ ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) → ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) |
44 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
45 |
44
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) → 𝐴 ∈ ℝ ) |
46 |
|
nn0re |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) |
47 |
46
|
ad2antll |
⊢ ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) → 𝐵 ∈ ℝ ) |
48 |
|
rexmul |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ·e 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
49 |
45 47 48
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) → ( 𝐴 ·e 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
50 |
|
nn0mulcl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 · 𝐵 ) ∈ ℕ0 ) |
51 |
50
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) → ( 𝐴 · 𝐵 ) ∈ ℕ0 ) |
52 |
49 51
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) → ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ) |
53 |
43 52
|
impbida |
⊢ ( ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 ·e 𝐵 ) ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ) ) |