Metamath Proof Explorer


Theorem xmulpnf2

Description: Multiplication by plus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulpnf2 ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( +∞ ·e 𝐴 ) = +∞ )

Proof

Step Hyp Ref Expression
1 pnfxr +∞ ∈ ℝ*
2 xmulcom ( ( +∞ ∈ ℝ*𝐴 ∈ ℝ* ) → ( +∞ ·e 𝐴 ) = ( 𝐴 ·e +∞ ) )
3 1 2 mpan ( 𝐴 ∈ ℝ* → ( +∞ ·e 𝐴 ) = ( 𝐴 ·e +∞ ) )
4 3 adantr ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( +∞ ·e 𝐴 ) = ( 𝐴 ·e +∞ ) )
5 xmulpnf1 ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ )
6 4 5 eqtrd ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( +∞ ·e 𝐴 ) = +∞ )