| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elxnn0 | ⊢ ( 𝑁  ∈  ℕ0*  ↔  ( 𝑁  ∈  ℕ0  ∨  𝑁  =  +∞ ) ) | 
						
							| 2 |  | elnnne0 | ⊢ ( 𝑁  ∈  ℕ  ↔  ( 𝑁  ∈  ℕ0  ∧  𝑁  ≠  0 ) ) | 
						
							| 3 |  | nngt0 | ⊢ ( 𝑁  ∈  ℕ  →  0  <  𝑁 ) | 
						
							| 4 | 2 3 | sylbir | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑁  ≠  0 )  →  0  <  𝑁 ) | 
						
							| 5 | 4 | ancoms | ⊢ ( ( 𝑁  ≠  0  ∧  𝑁  ∈  ℕ0 )  →  0  <  𝑁 ) | 
						
							| 6 | 5 | adantll | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∨  𝑁  =  +∞ )  ∧  𝑁  ≠  0 )  ∧  𝑁  ∈  ℕ0 )  →  0  <  𝑁 ) | 
						
							| 7 |  | 0ltpnf | ⊢ 0  <  +∞ | 
						
							| 8 |  | breq2 | ⊢ ( 𝑁  =  +∞  →  ( 0  <  𝑁  ↔  0  <  +∞ ) ) | 
						
							| 9 | 7 8 | mpbiri | ⊢ ( 𝑁  =  +∞  →  0  <  𝑁 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∨  𝑁  =  +∞ )  ∧  𝑁  ≠  0 )  ∧  𝑁  =  +∞ )  →  0  <  𝑁 ) | 
						
							| 11 |  | simpl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∨  𝑁  =  +∞ )  ∧  𝑁  ≠  0 )  →  ( 𝑁  ∈  ℕ0  ∨  𝑁  =  +∞ ) ) | 
						
							| 12 | 6 10 11 | mpjaodan | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∨  𝑁  =  +∞ )  ∧  𝑁  ≠  0 )  →  0  <  𝑁 ) | 
						
							| 13 | 1 12 | sylanb | ⊢ ( ( 𝑁  ∈  ℕ0*  ∧  𝑁  ≠  0 )  →  0  <  𝑁 ) |