Metamath Proof Explorer


Theorem xnn01gt

Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than 1. (Contributed by Thierry Arnoux, 21-Nov-2023)

Ref Expression
Assertion xnn01gt ( 𝑁 ∈ ℕ0* → ( ¬ 𝑁 ∈ { 0 , 1 } ↔ 1 < 𝑁 ) )

Proof

Step Hyp Ref Expression
1 nelpr ( 𝑁 ∈ ℕ0* → ( ¬ 𝑁 ∈ { 0 , 1 } ↔ ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ) )
2 xnn0n0n1ge2b ( 𝑁 ∈ ℕ0* → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) )
3 2nn0 2 ∈ ℕ0
4 xnn0lem1lt ( ( 2 ∈ ℕ0𝑁 ∈ ℕ0* ) → ( 2 ≤ 𝑁 ↔ ( 2 − 1 ) < 𝑁 ) )
5 3 4 mpan ( 𝑁 ∈ ℕ0* → ( 2 ≤ 𝑁 ↔ ( 2 − 1 ) < 𝑁 ) )
6 2m1e1 ( 2 − 1 ) = 1
7 6 breq1i ( ( 2 − 1 ) < 𝑁 ↔ 1 < 𝑁 )
8 5 7 bitrdi ( 𝑁 ∈ ℕ0* → ( 2 ≤ 𝑁 ↔ 1 < 𝑁 ) )
9 1 2 8 3bitrd ( 𝑁 ∈ ℕ0* → ( ¬ 𝑁 ∈ { 0 , 1 } ↔ 1 < 𝑁 ) )