Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than 1. (Contributed by Thierry Arnoux, 21-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | xnn01gt | ⊢ ( 𝑁 ∈ ℕ0* → ( ¬ 𝑁 ∈ { 0 , 1 } ↔ 1 < 𝑁 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelpr | ⊢ ( 𝑁 ∈ ℕ0* → ( ¬ 𝑁 ∈ { 0 , 1 } ↔ ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ) ) | |
2 | xnn0n0n1ge2b | ⊢ ( 𝑁 ∈ ℕ0* → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) | |
3 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
4 | xnn0lem1lt | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) → ( 2 ≤ 𝑁 ↔ ( 2 − 1 ) < 𝑁 ) ) | |
5 | 3 4 | mpan | ⊢ ( 𝑁 ∈ ℕ0* → ( 2 ≤ 𝑁 ↔ ( 2 − 1 ) < 𝑁 ) ) |
6 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
7 | 6 | breq1i | ⊢ ( ( 2 − 1 ) < 𝑁 ↔ 1 < 𝑁 ) |
8 | 5 7 | bitrdi | ⊢ ( 𝑁 ∈ ℕ0* → ( 2 ≤ 𝑁 ↔ 1 < 𝑁 ) ) |
9 | 1 2 8 | 3bitrd | ⊢ ( 𝑁 ∈ ℕ0* → ( ¬ 𝑁 ∈ { 0 , 1 } ↔ 1 < 𝑁 ) ) |