Metamath Proof Explorer


Theorem xnn01gt

Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than 1. (Contributed by Thierry Arnoux, 21-Nov-2023)

Ref Expression
Assertion xnn01gt N 0 * ¬ N 0 1 1 < N

Proof

Step Hyp Ref Expression
1 nelpr N 0 * ¬ N 0 1 N 0 N 1
2 xnn0n0n1ge2b N 0 * N 0 N 1 2 N
3 2nn0 2 0
4 xnn0lem1lt 2 0 N 0 * 2 N 2 1 < N
5 3 4 mpan N 0 * 2 N 2 1 < N
6 2m1e1 2 1 = 1
7 6 breq1i 2 1 < N 1 < N
8 5 7 bitrdi N 0 * 2 N 1 < N
9 1 2 8 3bitrd N 0 * ¬ N 0 1 1 < N