| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nelpr |  |-  ( N e. NN0* -> ( -. N e. { 0 , 1 } <-> ( N =/= 0 /\ N =/= 1 ) ) ) | 
						
							| 2 |  | xnn0n0n1ge2b |  |-  ( N e. NN0* -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) | 
						
							| 3 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 4 |  | xnn0lem1lt |  |-  ( ( 2 e. NN0 /\ N e. NN0* ) -> ( 2 <_ N <-> ( 2 - 1 ) < N ) ) | 
						
							| 5 | 3 4 | mpan |  |-  ( N e. NN0* -> ( 2 <_ N <-> ( 2 - 1 ) < N ) ) | 
						
							| 6 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 7 | 6 | breq1i |  |-  ( ( 2 - 1 ) < N <-> 1 < N ) | 
						
							| 8 | 5 7 | bitrdi |  |-  ( N e. NN0* -> ( 2 <_ N <-> 1 < N ) ) | 
						
							| 9 | 1 2 8 | 3bitrd |  |-  ( N e. NN0* -> ( -. N e. { 0 , 1 } <-> 1 < N ) ) |