| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nelpr |
|- ( N e. NN0* -> ( -. N e. { 0 , 1 } <-> ( N =/= 0 /\ N =/= 1 ) ) ) |
| 2 |
|
xnn0n0n1ge2b |
|- ( N e. NN0* -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |
| 3 |
|
2nn0 |
|- 2 e. NN0 |
| 4 |
|
xnn0lem1lt |
|- ( ( 2 e. NN0 /\ N e. NN0* ) -> ( 2 <_ N <-> ( 2 - 1 ) < N ) ) |
| 5 |
3 4
|
mpan |
|- ( N e. NN0* -> ( 2 <_ N <-> ( 2 - 1 ) < N ) ) |
| 6 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 7 |
6
|
breq1i |
|- ( ( 2 - 1 ) < N <-> 1 < N ) |
| 8 |
5 7
|
bitrdi |
|- ( N e. NN0* -> ( 2 <_ N <-> 1 < N ) ) |
| 9 |
1 2 8
|
3bitrd |
|- ( N e. NN0* -> ( -. N e. { 0 , 1 } <-> 1 < N ) ) |