| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxnn0 |
|- ( N e. NN0* <-> ( N e. NN0 \/ N = +oo ) ) |
| 2 |
|
nn0n0n1ge2b |
|- ( N e. NN0 -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |
| 3 |
|
0nn0 |
|- 0 e. NN0 |
| 4 |
|
nn0nepnf |
|- ( 0 e. NN0 -> 0 =/= +oo ) |
| 5 |
3 4
|
ax-mp |
|- 0 =/= +oo |
| 6 |
5
|
necomi |
|- +oo =/= 0 |
| 7 |
|
neeq1 |
|- ( N = +oo -> ( N =/= 0 <-> +oo =/= 0 ) ) |
| 8 |
6 7
|
mpbiri |
|- ( N = +oo -> N =/= 0 ) |
| 9 |
|
1nn0 |
|- 1 e. NN0 |
| 10 |
|
nn0nepnf |
|- ( 1 e. NN0 -> 1 =/= +oo ) |
| 11 |
9 10
|
ax-mp |
|- 1 =/= +oo |
| 12 |
11
|
necomi |
|- +oo =/= 1 |
| 13 |
|
neeq1 |
|- ( N = +oo -> ( N =/= 1 <-> +oo =/= 1 ) ) |
| 14 |
12 13
|
mpbiri |
|- ( N = +oo -> N =/= 1 ) |
| 15 |
8 14
|
jca |
|- ( N = +oo -> ( N =/= 0 /\ N =/= 1 ) ) |
| 16 |
|
2re |
|- 2 e. RR |
| 17 |
16
|
rexri |
|- 2 e. RR* |
| 18 |
|
pnfge |
|- ( 2 e. RR* -> 2 <_ +oo ) |
| 19 |
17 18
|
ax-mp |
|- 2 <_ +oo |
| 20 |
|
breq2 |
|- ( N = +oo -> ( 2 <_ N <-> 2 <_ +oo ) ) |
| 21 |
19 20
|
mpbiri |
|- ( N = +oo -> 2 <_ N ) |
| 22 |
15 21
|
2thd |
|- ( N = +oo -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |
| 23 |
2 22
|
jaoi |
|- ( ( N e. NN0 \/ N = +oo ) -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |
| 24 |
1 23
|
sylbi |
|- ( N e. NN0* -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |