Metamath Proof Explorer


Theorem nn0n0n1ge2b

Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018)

Ref Expression
Assertion nn0n0n1ge2b
|- ( N e. NN0 -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) )

Proof

Step Hyp Ref Expression
1 nn0n0n1ge2
 |-  ( ( N e. NN0 /\ N =/= 0 /\ N =/= 1 ) -> 2 <_ N )
2 1 3expib
 |-  ( N e. NN0 -> ( ( N =/= 0 /\ N =/= 1 ) -> 2 <_ N ) )
3 ianor
 |-  ( -. ( N =/= 0 /\ N =/= 1 ) <-> ( -. N =/= 0 \/ -. N =/= 1 ) )
4 nne
 |-  ( -. N =/= 0 <-> N = 0 )
5 nne
 |-  ( -. N =/= 1 <-> N = 1 )
6 4 5 orbi12i
 |-  ( ( -. N =/= 0 \/ -. N =/= 1 ) <-> ( N = 0 \/ N = 1 ) )
7 3 6 bitri
 |-  ( -. ( N =/= 0 /\ N =/= 1 ) <-> ( N = 0 \/ N = 1 ) )
8 2pos
 |-  0 < 2
9 breq1
 |-  ( N = 0 -> ( N < 2 <-> 0 < 2 ) )
10 8 9 mpbiri
 |-  ( N = 0 -> N < 2 )
11 10 a1d
 |-  ( N = 0 -> ( N e. NN0 -> N < 2 ) )
12 1lt2
 |-  1 < 2
13 breq1
 |-  ( N = 1 -> ( N < 2 <-> 1 < 2 ) )
14 12 13 mpbiri
 |-  ( N = 1 -> N < 2 )
15 14 a1d
 |-  ( N = 1 -> ( N e. NN0 -> N < 2 ) )
16 11 15 jaoi
 |-  ( ( N = 0 \/ N = 1 ) -> ( N e. NN0 -> N < 2 ) )
17 16 impcom
 |-  ( ( N e. NN0 /\ ( N = 0 \/ N = 1 ) ) -> N < 2 )
18 nn0re
 |-  ( N e. NN0 -> N e. RR )
19 2re
 |-  2 e. RR
20 18 19 jctir
 |-  ( N e. NN0 -> ( N e. RR /\ 2 e. RR ) )
21 20 adantr
 |-  ( ( N e. NN0 /\ ( N = 0 \/ N = 1 ) ) -> ( N e. RR /\ 2 e. RR ) )
22 ltnle
 |-  ( ( N e. RR /\ 2 e. RR ) -> ( N < 2 <-> -. 2 <_ N ) )
23 21 22 syl
 |-  ( ( N e. NN0 /\ ( N = 0 \/ N = 1 ) ) -> ( N < 2 <-> -. 2 <_ N ) )
24 17 23 mpbid
 |-  ( ( N e. NN0 /\ ( N = 0 \/ N = 1 ) ) -> -. 2 <_ N )
25 24 ex
 |-  ( N e. NN0 -> ( ( N = 0 \/ N = 1 ) -> -. 2 <_ N ) )
26 7 25 syl5bi
 |-  ( N e. NN0 -> ( -. ( N =/= 0 /\ N =/= 1 ) -> -. 2 <_ N ) )
27 2 26 impcon4bid
 |-  ( N e. NN0 -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) )