Metamath Proof Explorer


Theorem elxnn0

Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020)

Ref Expression
Assertion elxnn0
|- ( A e. NN0* <-> ( A e. NN0 \/ A = +oo ) )

Proof

Step Hyp Ref Expression
1 df-xnn0
 |-  NN0* = ( NN0 u. { +oo } )
2 1 eleq2i
 |-  ( A e. NN0* <-> A e. ( NN0 u. { +oo } ) )
3 elun
 |-  ( A e. ( NN0 u. { +oo } ) <-> ( A e. NN0 \/ A e. { +oo } ) )
4 pnfex
 |-  +oo e. _V
5 4 elsn2
 |-  ( A e. { +oo } <-> A = +oo )
6 5 orbi2i
 |-  ( ( A e. NN0 \/ A e. { +oo } ) <-> ( A e. NN0 \/ A = +oo ) )
7 2 3 6 3bitri
 |-  ( A e. NN0* <-> ( A e. NN0 \/ A = +oo ) )