Metamath Proof Explorer


Theorem elxnn0

Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020)

Ref Expression
Assertion elxnn0 A0*A0A=+∞

Proof

Step Hyp Ref Expression
1 df-xnn0 0*=0+∞
2 1 eleq2i A0*A0+∞
3 elun A0+∞A0A+∞
4 pnfex +∞V
5 4 elsn2 A+∞A=+∞
6 5 orbi2i A0A+∞A0A=+∞
7 2 3 6 3bitri A0*A0A=+∞