| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxnn0 |
⊢ ( 𝑁 ∈ ℕ0* ↔ ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) ) |
| 2 |
|
nn0n0n1ge2b |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) |
| 3 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 4 |
|
nn0nepnf |
⊢ ( 0 ∈ ℕ0 → 0 ≠ +∞ ) |
| 5 |
3 4
|
ax-mp |
⊢ 0 ≠ +∞ |
| 6 |
5
|
necomi |
⊢ +∞ ≠ 0 |
| 7 |
|
neeq1 |
⊢ ( 𝑁 = +∞ → ( 𝑁 ≠ 0 ↔ +∞ ≠ 0 ) ) |
| 8 |
6 7
|
mpbiri |
⊢ ( 𝑁 = +∞ → 𝑁 ≠ 0 ) |
| 9 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 10 |
|
nn0nepnf |
⊢ ( 1 ∈ ℕ0 → 1 ≠ +∞ ) |
| 11 |
9 10
|
ax-mp |
⊢ 1 ≠ +∞ |
| 12 |
11
|
necomi |
⊢ +∞ ≠ 1 |
| 13 |
|
neeq1 |
⊢ ( 𝑁 = +∞ → ( 𝑁 ≠ 1 ↔ +∞ ≠ 1 ) ) |
| 14 |
12 13
|
mpbiri |
⊢ ( 𝑁 = +∞ → 𝑁 ≠ 1 ) |
| 15 |
8 14
|
jca |
⊢ ( 𝑁 = +∞ → ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ) |
| 16 |
|
2re |
⊢ 2 ∈ ℝ |
| 17 |
16
|
rexri |
⊢ 2 ∈ ℝ* |
| 18 |
|
pnfge |
⊢ ( 2 ∈ ℝ* → 2 ≤ +∞ ) |
| 19 |
17 18
|
ax-mp |
⊢ 2 ≤ +∞ |
| 20 |
|
breq2 |
⊢ ( 𝑁 = +∞ → ( 2 ≤ 𝑁 ↔ 2 ≤ +∞ ) ) |
| 21 |
19 20
|
mpbiri |
⊢ ( 𝑁 = +∞ → 2 ≤ 𝑁 ) |
| 22 |
15 21
|
2thd |
⊢ ( 𝑁 = +∞ → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) |
| 23 |
2 22
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) |
| 24 |
1 23
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0* → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) |