Metamath Proof Explorer


Theorem finextfldext

Description: A finite field extension is a field extension. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypothesis finextfldext.1 ( 𝜑𝐸 /FinExt 𝐹 )
Assertion finextfldext ( 𝜑𝐸 /FldExt 𝐹 )

Proof

Step Hyp Ref Expression
1 finextfldext.1 ( 𝜑𝐸 /FinExt 𝐹 )
2 df-finext /FinExt = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) }
3 2 relopabiv Rel /FinExt
4 3 brrelex1i ( 𝐸 /FinExt 𝐹𝐸 ∈ V )
5 1 4 syl ( 𝜑𝐸 ∈ V )
6 3 brrelex2i ( 𝐸 /FinExt 𝐹𝐹 ∈ V )
7 1 6 syl ( 𝜑𝐹 ∈ V )
8 breq12 ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → ( 𝑒 /FldExt 𝑓𝐸 /FldExt 𝐹 ) )
9 oveq12 ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → ( 𝑒 [:] 𝑓 ) = ( 𝐸 [:] 𝐹 ) )
10 9 eleq1d ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → ( ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ↔ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) )
11 8 10 anbi12d ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → ( ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) ) )
12 11 2 brabga ( ( 𝐸 ∈ V ∧ 𝐹 ∈ V ) → ( 𝐸 /FinExt 𝐹 ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) ) )
13 5 7 12 syl2anc ( 𝜑 → ( 𝐸 /FinExt 𝐹 ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) ) )
14 1 13 mpbid ( 𝜑 → ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) )
15 14 simpld ( 𝜑𝐸 /FldExt 𝐹 )