| Step |
Hyp |
Ref |
Expression |
| 1 |
|
finextfldext.1 |
|- ( ph -> E /FinExt F ) |
| 2 |
|
df-finext |
|- /FinExt = { <. e , f >. | ( e /FldExt f /\ ( e [:] f ) e. NN0 ) } |
| 3 |
2
|
relopabiv |
|- Rel /FinExt |
| 4 |
3
|
brrelex1i |
|- ( E /FinExt F -> E e. _V ) |
| 5 |
1 4
|
syl |
|- ( ph -> E e. _V ) |
| 6 |
3
|
brrelex2i |
|- ( E /FinExt F -> F e. _V ) |
| 7 |
1 6
|
syl |
|- ( ph -> F e. _V ) |
| 8 |
|
breq12 |
|- ( ( e = E /\ f = F ) -> ( e /FldExt f <-> E /FldExt F ) ) |
| 9 |
|
oveq12 |
|- ( ( e = E /\ f = F ) -> ( e [:] f ) = ( E [:] F ) ) |
| 10 |
9
|
eleq1d |
|- ( ( e = E /\ f = F ) -> ( ( e [:] f ) e. NN0 <-> ( E [:] F ) e. NN0 ) ) |
| 11 |
8 10
|
anbi12d |
|- ( ( e = E /\ f = F ) -> ( ( e /FldExt f /\ ( e [:] f ) e. NN0 ) <-> ( E /FldExt F /\ ( E [:] F ) e. NN0 ) ) ) |
| 12 |
11 2
|
brabga |
|- ( ( E e. _V /\ F e. _V ) -> ( E /FinExt F <-> ( E /FldExt F /\ ( E [:] F ) e. NN0 ) ) ) |
| 13 |
5 7 12
|
syl2anc |
|- ( ph -> ( E /FinExt F <-> ( E /FldExt F /\ ( E [:] F ) e. NN0 ) ) ) |
| 14 |
1 13
|
mpbid |
|- ( ph -> ( E /FldExt F /\ ( E [:] F ) e. NN0 ) ) |
| 15 |
14
|
simpld |
|- ( ph -> E /FldExt F ) |