Step |
Hyp |
Ref |
Expression |
1 |
|
fedgmul.a |
⊢ 𝐴 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑉 ) |
2 |
|
fedgmul.b |
⊢ 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) |
3 |
|
fedgmul.c |
⊢ 𝐶 = ( ( subringAlg ‘ 𝐹 ) ‘ 𝑉 ) |
4 |
|
fedgmul.f |
⊢ 𝐹 = ( 𝐸 ↾s 𝑈 ) |
5 |
|
fedgmul.k |
⊢ 𝐾 = ( 𝐸 ↾s 𝑉 ) |
6 |
|
fedgmul.1 |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
7 |
|
fedgmul.2 |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
8 |
|
fedgmul.3 |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
9 |
|
fedgmul.4 |
⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |
10 |
|
fedgmul.5 |
⊢ ( 𝜑 → 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) |
11 |
4
|
subsubrg |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( 𝑉 ∈ ( SubRing ‘ 𝐹 ) ↔ ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) ) ) |
12 |
11
|
biimpa |
⊢ ( ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) → ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) ) |
13 |
9 10 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) ) |
14 |
13
|
simprd |
⊢ ( 𝜑 → 𝑉 ⊆ 𝑈 ) |
15 |
|
ressabs |
⊢ ( ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝐸 ↾s 𝑈 ) ↾s 𝑉 ) = ( 𝐸 ↾s 𝑉 ) ) |
16 |
9 14 15
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 ↾s 𝑈 ) ↾s 𝑉 ) = ( 𝐸 ↾s 𝑉 ) ) |
17 |
4
|
oveq1i |
⊢ ( 𝐹 ↾s 𝑉 ) = ( ( 𝐸 ↾s 𝑈 ) ↾s 𝑉 ) |
18 |
16 17 5
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐹 ↾s 𝑉 ) = 𝐾 ) |
19 |
18 8
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ↾s 𝑉 ) ∈ DivRing ) |
20 |
|
eqid |
⊢ ( 𝐹 ↾s 𝑉 ) = ( 𝐹 ↾s 𝑉 ) |
21 |
3 20
|
sralvec |
⊢ ( ( 𝐹 ∈ DivRing ∧ ( 𝐹 ↾s 𝑉 ) ∈ DivRing ∧ 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) → 𝐶 ∈ LVec ) |
22 |
7 19 10 21
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ∈ LVec ) |
23 |
|
eqid |
⊢ ( LBasis ‘ 𝐶 ) = ( LBasis ‘ 𝐶 ) |
24 |
23
|
lbsex |
⊢ ( 𝐶 ∈ LVec → ( LBasis ‘ 𝐶 ) ≠ ∅ ) |
25 |
22 24
|
syl |
⊢ ( 𝜑 → ( LBasis ‘ 𝐶 ) ≠ ∅ ) |
26 |
|
n0 |
⊢ ( ( LBasis ‘ 𝐶 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) |
27 |
25 26
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) |
28 |
2 4
|
sralvec |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐵 ∈ LVec ) |
29 |
6 7 9 28
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ LVec ) |
30 |
|
eqid |
⊢ ( LBasis ‘ 𝐵 ) = ( LBasis ‘ 𝐵 ) |
31 |
30
|
lbsex |
⊢ ( 𝐵 ∈ LVec → ( LBasis ‘ 𝐵 ) ≠ ∅ ) |
32 |
29 31
|
syl |
⊢ ( 𝜑 → ( LBasis ‘ 𝐵 ) ≠ ∅ ) |
33 |
|
n0 |
⊢ ( ( LBasis ‘ 𝐵 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) |
34 |
32 33
|
sylib |
⊢ ( 𝜑 → ∃ 𝑦 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) → ∃ 𝑦 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) |
36 |
|
drngring |
⊢ ( 𝐸 ∈ DivRing → 𝐸 ∈ Ring ) |
37 |
6 36
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ Ring ) |
38 |
37
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝐸 ∈ Ring ) |
39 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) |
40 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
41 |
40 23
|
lbsss |
⊢ ( 𝑥 ∈ ( LBasis ‘ 𝐶 ) → 𝑥 ⊆ ( Base ‘ 𝐶 ) ) |
42 |
39 41
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑥 ⊆ ( Base ‘ 𝐶 ) ) |
43 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
44 |
43
|
subrgss |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
45 |
9 44
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
46 |
4 43
|
ressbas2 |
⊢ ( 𝑈 ⊆ ( Base ‘ 𝐸 ) → 𝑈 = ( Base ‘ 𝐹 ) ) |
47 |
45 46
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐹 ) ) |
48 |
3
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( ( subringAlg ‘ 𝐹 ) ‘ 𝑉 ) ) |
49 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
50 |
49
|
subrgss |
⊢ ( 𝑉 ∈ ( SubRing ‘ 𝐹 ) → 𝑉 ⊆ ( Base ‘ 𝐹 ) ) |
51 |
10 50
|
syl |
⊢ ( 𝜑 → 𝑉 ⊆ ( Base ‘ 𝐹 ) ) |
52 |
48 51
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ 𝐶 ) ) |
53 |
47 52
|
eqtrd |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
54 |
53 45
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) ⊆ ( Base ‘ 𝐸 ) ) |
55 |
54
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( Base ‘ 𝐶 ) ⊆ ( Base ‘ 𝐸 ) ) |
56 |
42 55
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑥 ⊆ ( Base ‘ 𝐸 ) ) |
57 |
56
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑥 ⊆ ( Base ‘ 𝐸 ) ) |
58 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑖 ∈ 𝑥 ) |
59 |
57 58
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑖 ∈ ( Base ‘ 𝐸 ) ) |
60 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) |
61 |
|
eqid |
⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) |
62 |
61 30
|
lbsss |
⊢ ( 𝑦 ∈ ( LBasis ‘ 𝐵 ) → 𝑦 ⊆ ( Base ‘ 𝐵 ) ) |
63 |
60 62
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑦 ⊆ ( Base ‘ 𝐵 ) ) |
64 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) ) |
65 |
64 45
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐵 ) ) |
66 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐵 ) ) |
67 |
63 66
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑦 ⊆ ( Base ‘ 𝐸 ) ) |
68 |
67
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑦 ⊆ ( Base ‘ 𝐸 ) ) |
69 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑗 ∈ 𝑦 ) |
70 |
68 69
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑗 ∈ ( Base ‘ 𝐸 ) ) |
71 |
|
eqid |
⊢ ( .r ‘ 𝐸 ) = ( .r ‘ 𝐸 ) |
72 |
43 71
|
ringcl |
⊢ ( ( 𝐸 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝐸 ) ∧ 𝑗 ∈ ( Base ‘ 𝐸 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐸 ) ) |
73 |
38 59 70 72
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐸 ) ) |
74 |
1
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑉 ) ) |
75 |
13
|
simpld |
⊢ ( 𝜑 → 𝑉 ∈ ( SubRing ‘ 𝐸 ) ) |
76 |
43
|
subrgss |
⊢ ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) → 𝑉 ⊆ ( Base ‘ 𝐸 ) ) |
77 |
75 76
|
syl |
⊢ ( 𝜑 → 𝑉 ⊆ ( Base ‘ 𝐸 ) ) |
78 |
74 77
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐴 ) ) |
79 |
78
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐴 ) ) |
80 |
73 79
|
eleqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐴 ) ) |
81 |
80
|
anasss |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐴 ) ) |
82 |
81
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐴 ) ) |
83 |
|
oveq2 |
⊢ ( 𝑤 = 𝑗 → ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) = ( 𝑡 ( .r ‘ 𝐸 ) 𝑗 ) ) |
84 |
|
oveq1 |
⊢ ( 𝑡 = 𝑖 → ( 𝑡 ( .r ‘ 𝐸 ) 𝑗 ) = ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) |
85 |
83 84
|
cbvmpov |
⊢ ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) = ( 𝑗 ∈ 𝑦 , 𝑖 ∈ 𝑥 ↦ ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) |
86 |
85
|
fmpo |
⊢ ( ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐴 ) ↔ ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ 𝐴 ) ) |
87 |
82 86
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ 𝐴 ) ) |
88 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐵 ) ) = ( Base ‘ ( Scalar ‘ 𝐵 ) ) |
89 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐵 ) = ( ·𝑠 ‘ 𝐵 ) |
90 |
|
eqid |
⊢ ( +g ‘ 𝐵 ) = ( +g ‘ 𝐵 ) |
91 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) |
92 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝐵 ∈ LVec ) |
93 |
92
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝐵 ∈ LVec ) |
94 |
30
|
lbslinds |
⊢ ( LBasis ‘ 𝐵 ) ⊆ ( LIndS ‘ 𝐵 ) |
95 |
94 60
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑦 ∈ ( LIndS ‘ 𝐵 ) ) |
96 |
95
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑦 ∈ ( LIndS ‘ 𝐵 ) ) |
97 |
69
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑗 ∈ 𝑦 ) |
98 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑣 ∈ 𝑦 ) |
99 |
64 45
|
srasca |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝑈 ) = ( Scalar ‘ 𝐵 ) ) |
100 |
4 99
|
syl5eq |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐵 ) ) |
101 |
100
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
102 |
101 52
|
eqtr3d |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐵 ) ) = ( Base ‘ 𝐶 ) ) |
103 |
102
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( Base ‘ ( Scalar ‘ 𝐵 ) ) = ( Base ‘ 𝐶 ) ) |
104 |
42 103
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑥 ⊆ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
105 |
104
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑥 ⊆ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
106 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑖 ∈ 𝑥 ) |
107 |
105 106
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑖 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
108 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑢 ∈ 𝑥 ) |
109 |
105 108
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑢 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
110 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝐶 ∈ LVec ) |
111 |
|
eqid |
⊢ ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 ) |
112 |
40 23 111
|
islbs4 |
⊢ ( 𝑥 ∈ ( LBasis ‘ 𝐶 ) ↔ ( 𝑥 ∈ ( LIndS ‘ 𝐶 ) ∧ ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) = ( Base ‘ 𝐶 ) ) ) |
113 |
39 112
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑥 ∈ ( LIndS ‘ 𝐶 ) ∧ ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) = ( Base ‘ 𝐶 ) ) ) |
114 |
113
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑥 ∈ ( LIndS ‘ 𝐶 ) ) |
115 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
116 |
115
|
0nellinds |
⊢ ( ( 𝐶 ∈ LVec ∧ 𝑥 ∈ ( LIndS ‘ 𝐶 ) ) → ¬ ( 0g ‘ 𝐶 ) ∈ 𝑥 ) |
117 |
110 114 116
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ¬ ( 0g ‘ 𝐶 ) ∈ 𝑥 ) |
118 |
117
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ¬ ( 0g ‘ 𝐶 ) ∈ 𝑥 ) |
119 |
|
nelne2 |
⊢ ( ( 𝑖 ∈ 𝑥 ∧ ¬ ( 0g ‘ 𝐶 ) ∈ 𝑥 ) → 𝑖 ≠ ( 0g ‘ 𝐶 ) ) |
120 |
106 118 119
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑖 ≠ ( 0g ‘ 𝐶 ) ) |
121 |
100
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
122 |
3 7 10
|
drgext0g |
⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐶 ) ) |
123 |
121 122
|
eqtr3d |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐵 ) ) = ( 0g ‘ 𝐶 ) ) |
124 |
123
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 0g ‘ ( Scalar ‘ 𝐵 ) ) = ( 0g ‘ 𝐶 ) ) |
125 |
120 124
|
neeqtrrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑖 ≠ ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
126 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) |
127 |
|
ovexd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ V ) |
128 |
85
|
ovmpt4g |
⊢ ( ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ∧ ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ V ) → ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) |
129 |
97 106 127 128
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) |
130 |
2 6 9
|
drgextvsca |
⊢ ( 𝜑 → ( .r ‘ 𝐸 ) = ( ·𝑠 ‘ 𝐵 ) ) |
131 |
130
|
oveqd |
⊢ ( 𝜑 → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) = ( 𝑖 ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
132 |
131
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) = ( 𝑖 ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
133 |
129 132
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑖 ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
134 |
85
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) = ( 𝑗 ∈ 𝑦 , 𝑖 ∈ 𝑥 ↦ ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) |
135 |
|
simprr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) → 𝑖 = 𝑢 ) |
136 |
|
simprl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) → 𝑗 = 𝑣 ) |
137 |
135 136
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) = ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) ) |
138 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → 𝑣 ∈ 𝑦 ) |
139 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → 𝑢 ∈ 𝑥 ) |
140 |
|
ovexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) ∈ V ) |
141 |
134 137 138 139 140
|
ovmpod |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) = ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) ) |
142 |
141
|
adantllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) = ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) ) |
143 |
142
|
adantl3r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) = ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) ) |
144 |
143
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) = ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) ) |
145 |
130
|
oveqd |
⊢ ( 𝜑 → ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) = ( 𝑢 ( ·𝑠 ‘ 𝐵 ) 𝑣 ) ) |
146 |
145
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) = ( 𝑢 ( ·𝑠 ‘ 𝐵 ) 𝑣 ) ) |
147 |
144 146
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) = ( 𝑢 ( ·𝑠 ‘ 𝐵 ) 𝑣 ) ) |
148 |
126 133 147
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑖 ( ·𝑠 ‘ 𝐵 ) 𝑗 ) = ( 𝑢 ( ·𝑠 ‘ 𝐵 ) 𝑣 ) ) |
149 |
88 89 90 91 93 96 97 98 107 109 125 148
|
linds2eq |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) |
150 |
149
|
ex |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → ( ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) → ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) ) |
151 |
150
|
anasss |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ ( 𝑣 ∈ 𝑦 ∧ 𝑢 ∈ 𝑥 ) ) → ( ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) → ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) ) |
152 |
151
|
ralrimivva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → ∀ 𝑣 ∈ 𝑦 ∀ 𝑢 ∈ 𝑥 ( ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) → ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) ) |
153 |
152
|
anasss |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → ∀ 𝑣 ∈ 𝑦 ∀ 𝑢 ∈ 𝑥 ( ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) → ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) ) |
154 |
153
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ∀ 𝑣 ∈ 𝑦 ∀ 𝑢 ∈ 𝑥 ( ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) → ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) ) |
155 |
|
f1opr |
⊢ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) –1-1→ ( Base ‘ 𝐴 ) ↔ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ∀ 𝑣 ∈ 𝑦 ∀ 𝑢 ∈ 𝑥 ( ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) → ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) ) ) |
156 |
87 154 155
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) –1-1→ ( Base ‘ 𝐴 ) ) |
157 |
60 39
|
xpexd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑦 × 𝑥 ) ∈ V ) |
158 |
|
f1rnen |
⊢ ( ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) –1-1→ ( Base ‘ 𝐴 ) ∧ ( 𝑦 × 𝑥 ) ∈ V ) → ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ≈ ( 𝑦 × 𝑥 ) ) |
159 |
156 157 158
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ≈ ( 𝑦 × 𝑥 ) ) |
160 |
|
hasheni |
⊢ ( ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ≈ ( 𝑦 × 𝑥 ) → ( ♯ ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) = ( ♯ ‘ ( 𝑦 × 𝑥 ) ) ) |
161 |
159 160
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ♯ ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) = ( ♯ ‘ ( 𝑦 × 𝑥 ) ) ) |
162 |
|
hashxpe |
⊢ ( ( 𝑦 ∈ ( LBasis ‘ 𝐵 ) ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) → ( ♯ ‘ ( 𝑦 × 𝑥 ) ) = ( ( ♯ ‘ 𝑦 ) ·e ( ♯ ‘ 𝑥 ) ) ) |
163 |
60 39 162
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ♯ ‘ ( 𝑦 × 𝑥 ) ) = ( ( ♯ ‘ 𝑦 ) ·e ( ♯ ‘ 𝑥 ) ) ) |
164 |
161 163
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ♯ ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) = ( ( ♯ ‘ 𝑦 ) ·e ( ♯ ‘ 𝑥 ) ) ) |
165 |
1 5
|
sralvec |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐾 ∈ DivRing ∧ 𝑉 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐴 ∈ LVec ) |
166 |
6 8 75 165
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ LVec ) |
167 |
166
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝐴 ∈ LVec ) |
168 |
|
lveclmod |
⊢ ( 𝐴 ∈ LVec → 𝐴 ∈ LMod ) |
169 |
166 168
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ LMod ) |
170 |
169
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝐴 ∈ LMod ) |
171 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝐸 ∈ DivRing ) |
172 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝐹 ∈ DivRing ) |
173 |
8
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝐾 ∈ DivRing ) |
174 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |
175 |
10
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) |
176 |
|
fveq2 |
⊢ ( 𝑤 = 𝑗 → ( 𝑓 ‘ 𝑤 ) = ( 𝑓 ‘ 𝑗 ) ) |
177 |
176
|
fveq1d |
⊢ ( 𝑤 = 𝑗 → ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) = ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑣 ) ) |
178 |
|
fveq2 |
⊢ ( 𝑣 = 𝑖 → ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑣 ) = ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ) |
179 |
177 178
|
cbvmpov |
⊢ ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) = ( 𝑗 ∈ 𝑦 , 𝑖 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ) |
180 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) |
181 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) |
182 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) |
183 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) |
184 |
1 2 3 4 5 171 172 173 174 175 85 179 180 181 182 183
|
fedgmullem2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑐 = ( ( 𝑦 × 𝑥 ) × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) |
185 |
184
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) → ( ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) → 𝑐 = ( ( 𝑦 × 𝑥 ) × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) |
186 |
185
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ∀ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ( ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) → 𝑐 = ( ( 𝑦 × 𝑥 ) × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) |
187 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
188 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
189 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) |
190 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
191 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) |
192 |
|
eqid |
⊢ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) = ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) |
193 |
187 188 189 190 191 192
|
islindf4 |
⊢ ( ( 𝐴 ∈ LMod ∧ ( 𝑦 × 𝑥 ) ∈ V ∧ ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ 𝐴 ) ) → ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) LIndF 𝐴 ↔ ∀ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ( ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) → 𝑐 = ( ( 𝑦 × 𝑥 ) × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) ) |
194 |
193
|
biimpar |
⊢ ( ( ( 𝐴 ∈ LMod ∧ ( 𝑦 × 𝑥 ) ∈ V ∧ ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ 𝐴 ) ) ∧ ∀ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ( ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) → 𝑐 = ( ( 𝑦 × 𝑥 ) × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) → ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) LIndF 𝐴 ) |
195 |
170 157 87 186 194
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) LIndF 𝐴 ) |
196 |
73
|
anasss |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐸 ) ) |
197 |
196
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐸 ) ) |
198 |
85
|
rnmposs |
⊢ ( ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐸 ) → ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ⊆ ( Base ‘ 𝐸 ) ) |
199 |
197 198
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ⊆ ( Base ‘ 𝐸 ) ) |
200 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐴 ) ) |
201 |
199 200
|
sseqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ⊆ ( Base ‘ 𝐴 ) ) |
202 |
|
eqid |
⊢ ( LSpan ‘ 𝐴 ) = ( LSpan ‘ 𝐴 ) |
203 |
187 202
|
lspssv |
⊢ ( ( 𝐴 ∈ LMod ∧ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ⊆ ( Base ‘ 𝐴 ) ) → ( ( LSpan ‘ 𝐴 ) ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ⊆ ( Base ‘ 𝐴 ) ) |
204 |
170 201 203
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ( LSpan ‘ 𝐴 ) ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ⊆ ( Base ‘ 𝐴 ) ) |
205 |
|
simpl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ) |
206 |
205
|
ad4antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ) |
207 |
|
elmapi |
⊢ ( 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) → 𝑎 : 𝑦 ⟶ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
208 |
207
|
ad4antlr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → 𝑎 : 𝑦 ⟶ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
209 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → 𝑗 ∈ 𝑦 ) |
210 |
208 209
|
ffvelrnd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( 𝑎 ‘ 𝑗 ) ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
211 |
113
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) = ( Base ‘ 𝐶 ) ) |
212 |
206 211
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) = ( Base ‘ 𝐶 ) ) |
213 |
102
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( Base ‘ ( Scalar ‘ 𝐵 ) ) = ( Base ‘ 𝐶 ) ) |
214 |
212 213
|
eqtr4d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) = ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
215 |
210 214
|
eleqtrrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( 𝑎 ‘ 𝑗 ) ∈ ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) ) |
216 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
217 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
218 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐶 ) ) = ( 0g ‘ ( Scalar ‘ 𝐶 ) ) |
219 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐶 ) = ( ·𝑠 ‘ 𝐶 ) |
220 |
|
lveclmod |
⊢ ( 𝐶 ∈ LVec → 𝐶 ∈ LMod ) |
221 |
22 220
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
222 |
221
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝐶 ∈ LMod ) |
223 |
111 40 216 217 218 219 222 42
|
ellspds |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ( 𝑎 ‘ 𝑗 ) ∈ ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) ↔ ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) ) |
224 |
223
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑗 ) ∈ ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) ) → ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
225 |
206 215 224
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
226 |
225
|
ralrimiva |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) → ∀ 𝑗 ∈ 𝑦 ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
227 |
|
fveq2 |
⊢ ( 𝑤 = 𝑗 → ( 𝑎 ‘ 𝑤 ) = ( 𝑎 ‘ 𝑗 ) ) |
228 |
|
fveq2 |
⊢ ( 𝑣 = 𝑖 → ( 𝑏 ‘ 𝑣 ) = ( 𝑏 ‘ 𝑖 ) ) |
229 |
|
id |
⊢ ( 𝑣 = 𝑖 → 𝑣 = 𝑖 ) |
230 |
228 229
|
oveq12d |
⊢ ( 𝑣 = 𝑖 → ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) = ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) |
231 |
230
|
cbvmptv |
⊢ ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) = ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) |
232 |
231
|
oveq2i |
⊢ ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) |
233 |
232
|
a1i |
⊢ ( 𝑤 = 𝑗 → ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) |
234 |
227 233
|
eqeq12d |
⊢ ( 𝑤 = 𝑗 → ( ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ↔ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
235 |
234
|
anbi2d |
⊢ ( 𝑤 = 𝑗 → ( ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ↔ ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) ) |
236 |
235
|
rexbidv |
⊢ ( 𝑤 = 𝑗 → ( ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ↔ ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) ) |
237 |
236
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ 𝑦 ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ↔ ∀ 𝑗 ∈ 𝑦 ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
238 |
|
vex |
⊢ 𝑦 ∈ V |
239 |
|
breq1 |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑤 ) → ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ↔ ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) |
240 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑤 ) → ( 𝑏 ‘ 𝑣 ) = ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) |
241 |
240
|
oveq1d |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑤 ) → ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) = ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) |
242 |
241
|
mpteq2dv |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑤 ) → ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) = ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) |
243 |
242
|
oveq2d |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑤 ) → ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) |
244 |
243
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑤 ) → ( ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ↔ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) |
245 |
239 244
|
anbi12d |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑤 ) → ( ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ↔ ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ) |
246 |
238 245
|
ac6s |
⊢ ( ∀ 𝑤 ∈ 𝑦 ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ) |
247 |
237 246
|
sylbir |
⊢ ( ∀ 𝑗 ∈ 𝑦 ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ) |
248 |
226 247
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ) |
249 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) |
250 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑗 ∈ 𝑦 ) |
251 |
249 250
|
ffvelrnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑗 ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) |
252 |
|
elmapi |
⊢ ( ( 𝑓 ‘ 𝑗 ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) → ( 𝑓 ‘ 𝑗 ) : 𝑥 ⟶ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
253 |
251 252
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑗 ) : 𝑥 ⟶ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
254 |
253
|
anasss |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → ( 𝑓 ‘ 𝑗 ) : 𝑥 ⟶ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
255 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → 𝑖 ∈ 𝑥 ) |
256 |
254 255
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
257 |
74 77
|
srasca |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝑉 ) = ( Scalar ‘ 𝐴 ) ) |
258 |
5 257
|
syl5eq |
⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝐴 ) ) |
259 |
48 51
|
srasca |
⊢ ( 𝜑 → ( 𝐹 ↾s 𝑉 ) = ( Scalar ‘ 𝐶 ) ) |
260 |
18 259
|
eqtr3d |
⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝐶 ) ) |
261 |
258 260
|
eqtr3d |
⊢ ( 𝜑 → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐶 ) ) |
262 |
261
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
263 |
262
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
264 |
256 263
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
265 |
264
|
ralrimivva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) → ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
266 |
179
|
fmpo |
⊢ ( ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↔ ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
267 |
265 266
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) → ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
268 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) → ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∈ V ) |
269 |
157
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) → ( 𝑦 × 𝑥 ) ∈ V ) |
270 |
268 269
|
elmapd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) → ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ↔ ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
271 |
267 270
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) → ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ) |
272 |
271
|
ad5ant15 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) → ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ) |
273 |
272
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ) |
274 |
273
|
adantl3r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ) |
275 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑐 = ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ) → 𝑐 = ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ) |
276 |
275
|
breq1d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑐 = ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ) → ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ↔ ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
277 |
275
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑐 = ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ) → ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) = ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) |
278 |
277
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑐 = ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ) → ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 𝐴 Σg ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) |
279 |
278
|
eqeq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑐 = ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ) → ( 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ↔ 𝑧 = ( 𝐴 Σg ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) |
280 |
276 279
|
anbi12d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑐 = ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ) → ( ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ↔ ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) ) |
281 |
6
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝐸 ∈ DivRing ) |
282 |
7
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝐹 ∈ DivRing ) |
283 |
8
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝐾 ∈ DivRing ) |
284 |
9
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |
285 |
10
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) |
286 |
39
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) |
287 |
60
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) |
288 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑧 ∈ ( Base ‘ 𝐴 ) ) |
289 |
288
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑧 ∈ ( Base ‘ 𝐴 ) ) |
290 |
207
|
ad5antlr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑎 : 𝑦 ⟶ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
291 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
292 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) |
293 |
|
id |
⊢ ( 𝑤 = 𝑗 → 𝑤 = 𝑗 ) |
294 |
227 293
|
oveq12d |
⊢ ( 𝑤 = 𝑗 → ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) = ( ( 𝑎 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
295 |
294
|
cbvmptv |
⊢ ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) = ( 𝑗 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
296 |
295
|
oveq2i |
⊢ ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) = ( 𝐵 Σg ( 𝑗 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) |
297 |
292 296
|
eqtrdi |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑧 = ( 𝐵 Σg ( 𝑗 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) ) |
298 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) |
299 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) |
300 |
176
|
breq1d |
⊢ ( 𝑤 = 𝑗 → ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ↔ ( 𝑓 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) |
301 |
|
fveq2 |
⊢ ( 𝑣 = 𝑖 → ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) = ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑖 ) ) |
302 |
301 229
|
oveq12d |
⊢ ( 𝑣 = 𝑖 → ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) = ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) |
303 |
302
|
cbvmptv |
⊢ ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) = ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) |
304 |
176
|
fveq1d |
⊢ ( 𝑤 = 𝑗 → ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑖 ) = ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ) |
305 |
304
|
oveq1d |
⊢ ( 𝑤 = 𝑗 → ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) = ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) |
306 |
305
|
mpteq2dv |
⊢ ( 𝑤 = 𝑗 → ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) = ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) |
307 |
303 306
|
syl5eq |
⊢ ( 𝑤 = 𝑗 → ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) = ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) |
308 |
307
|
oveq2d |
⊢ ( 𝑤 = 𝑗 → ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) |
309 |
227 308
|
eqeq12d |
⊢ ( 𝑤 = 𝑗 → ( ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ↔ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
310 |
300 309
|
anbi12d |
⊢ ( 𝑤 = 𝑗 → ( ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ↔ ( ( 𝑓 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) ) |
311 |
310
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ↔ ∀ 𝑗 ∈ 𝑦 ( ( 𝑓 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
312 |
299 311
|
sylib |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → ∀ 𝑗 ∈ 𝑦 ( ( 𝑓 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
313 |
312
|
r19.21bi |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( ( 𝑓 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
314 |
313
|
simpld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( 𝑓 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) |
315 |
313
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) |
316 |
1 2 3 4 5 281 282 283 284 285 85 179 286 287 289 290 291 297 298 314 315
|
fedgmullem1 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) |
317 |
274 280 316
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → ∃ 𝑐 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) |
318 |
317
|
anasss |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ ( 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ) → ∃ 𝑐 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) |
319 |
248 318
|
exlimddv |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) → ∃ 𝑐 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) |
320 |
319
|
anasss |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ) → ∃ 𝑐 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) |
321 |
|
eqid |
⊢ ( LSpan ‘ 𝐵 ) = ( LSpan ‘ 𝐵 ) |
322 |
61 30 321
|
islbs4 |
⊢ ( 𝑦 ∈ ( LBasis ‘ 𝐵 ) ↔ ( 𝑦 ∈ ( LIndS ‘ 𝐵 ) ∧ ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) = ( Base ‘ 𝐵 ) ) ) |
323 |
60 322
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑦 ∈ ( LIndS ‘ 𝐵 ) ∧ ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) = ( Base ‘ 𝐵 ) ) ) |
324 |
323
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) = ( Base ‘ 𝐵 ) ) |
325 |
324
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) = ( Base ‘ 𝐵 ) ) |
326 |
78 65
|
eqtr3d |
⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
327 |
326
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
328 |
325 327
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) = ( Base ‘ 𝐴 ) ) |
329 |
288 328
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑧 ∈ ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) ) |
330 |
|
eqid |
⊢ ( Scalar ‘ 𝐵 ) = ( Scalar ‘ 𝐵 ) |
331 |
|
lveclmod |
⊢ ( 𝐵 ∈ LVec → 𝐵 ∈ LMod ) |
332 |
29 331
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ LMod ) |
333 |
332
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝐵 ∈ LMod ) |
334 |
321 61 88 330 91 89 333 63
|
ellspds |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑧 ∈ ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) ↔ ∃ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ) ) |
335 |
334
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) ) → ∃ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ) |
336 |
205 329 335
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ∃ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ) |
337 |
320 336
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ∃ 𝑐 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) |
338 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) |
339 |
202 187 338 188 191 189 87 170 157
|
ellspd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑧 ∈ ( ( LSpan ‘ 𝐴 ) ‘ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) “ ( 𝑦 × 𝑥 ) ) ) ↔ ∃ 𝑐 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) ) |
340 |
339
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑧 ∈ ( ( LSpan ‘ 𝐴 ) ‘ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) “ ( 𝑦 × 𝑥 ) ) ) ↔ ∃ 𝑐 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) ) |
341 |
337 340
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑧 ∈ ( ( LSpan ‘ 𝐴 ) ‘ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) “ ( 𝑦 × 𝑥 ) ) ) ) |
342 |
87
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) Fn ( 𝑦 × 𝑥 ) ) |
343 |
342
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) Fn ( 𝑦 × 𝑥 ) ) |
344 |
|
fnima |
⊢ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) Fn ( 𝑦 × 𝑥 ) → ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) “ ( 𝑦 × 𝑥 ) ) = ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) |
345 |
343 344
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) “ ( 𝑦 × 𝑥 ) ) = ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) |
346 |
345
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ( LSpan ‘ 𝐴 ) ‘ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) “ ( 𝑦 × 𝑥 ) ) ) = ( ( LSpan ‘ 𝐴 ) ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) |
347 |
341 346
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑧 ∈ ( ( LSpan ‘ 𝐴 ) ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) |
348 |
204 347
|
eqelssd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ( LSpan ‘ 𝐴 ) ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) = ( Base ‘ 𝐴 ) ) |
349 |
|
eqid |
⊢ ( Base ‘ ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) = ( Base ‘ ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) |
350 |
|
drngnzr |
⊢ ( 𝐾 ∈ DivRing → 𝐾 ∈ NzRing ) |
351 |
8 350
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ NzRing ) |
352 |
258 351
|
eqeltrrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝐴 ) ∈ NzRing ) |
353 |
352
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( Scalar ‘ 𝐴 ) ∈ NzRing ) |
354 |
187 349 188 189 190 191 202 170 353 157 156
|
lindflbs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ∈ ( LBasis ‘ 𝐴 ) ↔ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) LIndF 𝐴 ∧ ( ( LSpan ‘ 𝐴 ) ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) = ( Base ‘ 𝐴 ) ) ) ) |
355 |
195 348 354
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ∈ ( LBasis ‘ 𝐴 ) ) |
356 |
|
eqid |
⊢ ( LBasis ‘ 𝐴 ) = ( LBasis ‘ 𝐴 ) |
357 |
356
|
dimval |
⊢ ( ( 𝐴 ∈ LVec ∧ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ∈ ( LBasis ‘ 𝐴 ) ) → ( dim ‘ 𝐴 ) = ( ♯ ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) |
358 |
167 355 357
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( dim ‘ 𝐴 ) = ( ♯ ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) |
359 |
30
|
dimval |
⊢ ( ( 𝐵 ∈ LVec ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( dim ‘ 𝐵 ) = ( ♯ ‘ 𝑦 ) ) |
360 |
92 60 359
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( dim ‘ 𝐵 ) = ( ♯ ‘ 𝑦 ) ) |
361 |
23
|
dimval |
⊢ ( ( 𝐶 ∈ LVec ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) → ( dim ‘ 𝐶 ) = ( ♯ ‘ 𝑥 ) ) |
362 |
110 39 361
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( dim ‘ 𝐶 ) = ( ♯ ‘ 𝑥 ) ) |
363 |
360 362
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ( dim ‘ 𝐵 ) ·e ( dim ‘ 𝐶 ) ) = ( ( ♯ ‘ 𝑦 ) ·e ( ♯ ‘ 𝑥 ) ) ) |
364 |
164 358 363
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( dim ‘ 𝐴 ) = ( ( dim ‘ 𝐵 ) ·e ( dim ‘ 𝐶 ) ) ) |
365 |
35 364
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) → ( dim ‘ 𝐴 ) = ( ( dim ‘ 𝐵 ) ·e ( dim ‘ 𝐶 ) ) ) |
366 |
27 365
|
exlimddv |
⊢ ( 𝜑 → ( dim ‘ 𝐴 ) = ( ( dim ‘ 𝐵 ) ·e ( dim ‘ 𝐶 ) ) ) |