| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fedgmul.a |
⊢ 𝐴 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑉 ) |
| 2 |
|
fedgmul.b |
⊢ 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) |
| 3 |
|
fedgmul.c |
⊢ 𝐶 = ( ( subringAlg ‘ 𝐹 ) ‘ 𝑉 ) |
| 4 |
|
fedgmul.f |
⊢ 𝐹 = ( 𝐸 ↾s 𝑈 ) |
| 5 |
|
fedgmul.k |
⊢ 𝐾 = ( 𝐸 ↾s 𝑉 ) |
| 6 |
|
fedgmul.1 |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
| 7 |
|
fedgmul.2 |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
| 8 |
|
fedgmul.3 |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
| 9 |
|
fedgmul.4 |
⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |
| 10 |
|
fedgmul.5 |
⊢ ( 𝜑 → 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) |
| 11 |
4
|
subsubrg |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( 𝑉 ∈ ( SubRing ‘ 𝐹 ) ↔ ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) ) ) |
| 12 |
11
|
biimpa |
⊢ ( ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) → ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) ) |
| 13 |
9 10 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) ) |
| 14 |
13
|
simprd |
⊢ ( 𝜑 → 𝑉 ⊆ 𝑈 ) |
| 15 |
|
ressabs |
⊢ ( ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝐸 ↾s 𝑈 ) ↾s 𝑉 ) = ( 𝐸 ↾s 𝑉 ) ) |
| 16 |
9 14 15
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 ↾s 𝑈 ) ↾s 𝑉 ) = ( 𝐸 ↾s 𝑉 ) ) |
| 17 |
4
|
oveq1i |
⊢ ( 𝐹 ↾s 𝑉 ) = ( ( 𝐸 ↾s 𝑈 ) ↾s 𝑉 ) |
| 18 |
16 17 5
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐹 ↾s 𝑉 ) = 𝐾 ) |
| 19 |
18 8
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ↾s 𝑉 ) ∈ DivRing ) |
| 20 |
|
eqid |
⊢ ( 𝐹 ↾s 𝑉 ) = ( 𝐹 ↾s 𝑉 ) |
| 21 |
3 20
|
sralvec |
⊢ ( ( 𝐹 ∈ DivRing ∧ ( 𝐹 ↾s 𝑉 ) ∈ DivRing ∧ 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) → 𝐶 ∈ LVec ) |
| 22 |
7 19 10 21
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ∈ LVec ) |
| 23 |
|
eqid |
⊢ ( LBasis ‘ 𝐶 ) = ( LBasis ‘ 𝐶 ) |
| 24 |
23
|
lbsex |
⊢ ( 𝐶 ∈ LVec → ( LBasis ‘ 𝐶 ) ≠ ∅ ) |
| 25 |
22 24
|
syl |
⊢ ( 𝜑 → ( LBasis ‘ 𝐶 ) ≠ ∅ ) |
| 26 |
|
n0 |
⊢ ( ( LBasis ‘ 𝐶 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) |
| 27 |
25 26
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) |
| 28 |
2 4
|
sralvec |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐵 ∈ LVec ) |
| 29 |
6 7 9 28
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ LVec ) |
| 30 |
|
eqid |
⊢ ( LBasis ‘ 𝐵 ) = ( LBasis ‘ 𝐵 ) |
| 31 |
30
|
lbsex |
⊢ ( 𝐵 ∈ LVec → ( LBasis ‘ 𝐵 ) ≠ ∅ ) |
| 32 |
29 31
|
syl |
⊢ ( 𝜑 → ( LBasis ‘ 𝐵 ) ≠ ∅ ) |
| 33 |
|
n0 |
⊢ ( ( LBasis ‘ 𝐵 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) |
| 34 |
32 33
|
sylib |
⊢ ( 𝜑 → ∃ 𝑦 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) → ∃ 𝑦 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) |
| 36 |
|
drngring |
⊢ ( 𝐸 ∈ DivRing → 𝐸 ∈ Ring ) |
| 37 |
6 36
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ Ring ) |
| 38 |
37
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝐸 ∈ Ring ) |
| 39 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) |
| 40 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 41 |
40 23
|
lbsss |
⊢ ( 𝑥 ∈ ( LBasis ‘ 𝐶 ) → 𝑥 ⊆ ( Base ‘ 𝐶 ) ) |
| 42 |
39 41
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑥 ⊆ ( Base ‘ 𝐶 ) ) |
| 43 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 44 |
43
|
subrgss |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
| 45 |
9 44
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
| 46 |
4 43
|
ressbas2 |
⊢ ( 𝑈 ⊆ ( Base ‘ 𝐸 ) → 𝑈 = ( Base ‘ 𝐹 ) ) |
| 47 |
45 46
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐹 ) ) |
| 48 |
3
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( ( subringAlg ‘ 𝐹 ) ‘ 𝑉 ) ) |
| 49 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 50 |
49
|
subrgss |
⊢ ( 𝑉 ∈ ( SubRing ‘ 𝐹 ) → 𝑉 ⊆ ( Base ‘ 𝐹 ) ) |
| 51 |
10 50
|
syl |
⊢ ( 𝜑 → 𝑉 ⊆ ( Base ‘ 𝐹 ) ) |
| 52 |
48 51
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ 𝐶 ) ) |
| 53 |
47 52
|
eqtrd |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
| 54 |
53 45
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) ⊆ ( Base ‘ 𝐸 ) ) |
| 55 |
54
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( Base ‘ 𝐶 ) ⊆ ( Base ‘ 𝐸 ) ) |
| 56 |
42 55
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑥 ⊆ ( Base ‘ 𝐸 ) ) |
| 57 |
56
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑥 ⊆ ( Base ‘ 𝐸 ) ) |
| 58 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑖 ∈ 𝑥 ) |
| 59 |
57 58
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑖 ∈ ( Base ‘ 𝐸 ) ) |
| 60 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) |
| 61 |
|
eqid |
⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) |
| 62 |
61 30
|
lbsss |
⊢ ( 𝑦 ∈ ( LBasis ‘ 𝐵 ) → 𝑦 ⊆ ( Base ‘ 𝐵 ) ) |
| 63 |
60 62
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑦 ⊆ ( Base ‘ 𝐵 ) ) |
| 64 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) ) |
| 65 |
64 45
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐵 ) ) |
| 66 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐵 ) ) |
| 67 |
63 66
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑦 ⊆ ( Base ‘ 𝐸 ) ) |
| 68 |
67
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑦 ⊆ ( Base ‘ 𝐸 ) ) |
| 69 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑗 ∈ 𝑦 ) |
| 70 |
68 69
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑗 ∈ ( Base ‘ 𝐸 ) ) |
| 71 |
|
eqid |
⊢ ( .r ‘ 𝐸 ) = ( .r ‘ 𝐸 ) |
| 72 |
43 71
|
ringcl |
⊢ ( ( 𝐸 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝐸 ) ∧ 𝑗 ∈ ( Base ‘ 𝐸 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐸 ) ) |
| 73 |
38 59 70 72
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐸 ) ) |
| 74 |
1
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑉 ) ) |
| 75 |
13
|
simpld |
⊢ ( 𝜑 → 𝑉 ∈ ( SubRing ‘ 𝐸 ) ) |
| 76 |
43
|
subrgss |
⊢ ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) → 𝑉 ⊆ ( Base ‘ 𝐸 ) ) |
| 77 |
75 76
|
syl |
⊢ ( 𝜑 → 𝑉 ⊆ ( Base ‘ 𝐸 ) ) |
| 78 |
74 77
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐴 ) ) |
| 79 |
78
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐴 ) ) |
| 80 |
73 79
|
eleqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐴 ) ) |
| 81 |
80
|
anasss |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐴 ) ) |
| 82 |
81
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐴 ) ) |
| 83 |
|
oveq2 |
⊢ ( 𝑤 = 𝑗 → ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) = ( 𝑡 ( .r ‘ 𝐸 ) 𝑗 ) ) |
| 84 |
|
oveq1 |
⊢ ( 𝑡 = 𝑖 → ( 𝑡 ( .r ‘ 𝐸 ) 𝑗 ) = ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) |
| 85 |
83 84
|
cbvmpov |
⊢ ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) = ( 𝑗 ∈ 𝑦 , 𝑖 ∈ 𝑥 ↦ ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) |
| 86 |
85
|
fmpo |
⊢ ( ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐴 ) ↔ ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ 𝐴 ) ) |
| 87 |
82 86
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ 𝐴 ) ) |
| 88 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐵 ) ) = ( Base ‘ ( Scalar ‘ 𝐵 ) ) |
| 89 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐵 ) = ( ·𝑠 ‘ 𝐵 ) |
| 90 |
|
eqid |
⊢ ( +g ‘ 𝐵 ) = ( +g ‘ 𝐵 ) |
| 91 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) |
| 92 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝐵 ∈ LVec ) |
| 93 |
92
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝐵 ∈ LVec ) |
| 94 |
30
|
lbslinds |
⊢ ( LBasis ‘ 𝐵 ) ⊆ ( LIndS ‘ 𝐵 ) |
| 95 |
94 60
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑦 ∈ ( LIndS ‘ 𝐵 ) ) |
| 96 |
95
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑦 ∈ ( LIndS ‘ 𝐵 ) ) |
| 97 |
69
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑗 ∈ 𝑦 ) |
| 98 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑣 ∈ 𝑦 ) |
| 99 |
64 45
|
srasca |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝑈 ) = ( Scalar ‘ 𝐵 ) ) |
| 100 |
4 99
|
eqtrid |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐵 ) ) |
| 101 |
100
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 102 |
101 52
|
eqtr3d |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐵 ) ) = ( Base ‘ 𝐶 ) ) |
| 103 |
102
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( Base ‘ ( Scalar ‘ 𝐵 ) ) = ( Base ‘ 𝐶 ) ) |
| 104 |
42 103
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑥 ⊆ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 105 |
104
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑥 ⊆ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 106 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑖 ∈ 𝑥 ) |
| 107 |
105 106
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑖 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 108 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑢 ∈ 𝑥 ) |
| 109 |
105 108
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑢 ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 110 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝐶 ∈ LVec ) |
| 111 |
|
eqid |
⊢ ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 ) |
| 112 |
40 23 111
|
islbs4 |
⊢ ( 𝑥 ∈ ( LBasis ‘ 𝐶 ) ↔ ( 𝑥 ∈ ( LIndS ‘ 𝐶 ) ∧ ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) = ( Base ‘ 𝐶 ) ) ) |
| 113 |
39 112
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑥 ∈ ( LIndS ‘ 𝐶 ) ∧ ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) = ( Base ‘ 𝐶 ) ) ) |
| 114 |
113
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝑥 ∈ ( LIndS ‘ 𝐶 ) ) |
| 115 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
| 116 |
115
|
0nellinds |
⊢ ( ( 𝐶 ∈ LVec ∧ 𝑥 ∈ ( LIndS ‘ 𝐶 ) ) → ¬ ( 0g ‘ 𝐶 ) ∈ 𝑥 ) |
| 117 |
110 114 116
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ¬ ( 0g ‘ 𝐶 ) ∈ 𝑥 ) |
| 118 |
117
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ¬ ( 0g ‘ 𝐶 ) ∈ 𝑥 ) |
| 119 |
|
nelne2 |
⊢ ( ( 𝑖 ∈ 𝑥 ∧ ¬ ( 0g ‘ 𝐶 ) ∈ 𝑥 ) → 𝑖 ≠ ( 0g ‘ 𝐶 ) ) |
| 120 |
106 118 119
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑖 ≠ ( 0g ‘ 𝐶 ) ) |
| 121 |
100
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 122 |
3 7 10
|
drgext0g |
⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐶 ) ) |
| 123 |
121 122
|
eqtr3d |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐵 ) ) = ( 0g ‘ 𝐶 ) ) |
| 124 |
123
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 0g ‘ ( Scalar ‘ 𝐵 ) ) = ( 0g ‘ 𝐶 ) ) |
| 125 |
120 124
|
neeqtrrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → 𝑖 ≠ ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 126 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) |
| 127 |
|
ovexd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ V ) |
| 128 |
85
|
ovmpt4g |
⊢ ( ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ∧ ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ V ) → ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) |
| 129 |
97 106 127 128
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) |
| 130 |
2 6 9
|
drgextvsca |
⊢ ( 𝜑 → ( .r ‘ 𝐸 ) = ( ·𝑠 ‘ 𝐵 ) ) |
| 131 |
130
|
oveqd |
⊢ ( 𝜑 → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) = ( 𝑖 ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
| 132 |
131
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) = ( 𝑖 ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
| 133 |
129 132
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑖 ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
| 134 |
85
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) = ( 𝑗 ∈ 𝑦 , 𝑖 ∈ 𝑥 ↦ ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) |
| 135 |
|
simprr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) → 𝑖 = 𝑢 ) |
| 136 |
|
simprl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) → 𝑗 = 𝑣 ) |
| 137 |
135 136
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) = ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) ) |
| 138 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → 𝑣 ∈ 𝑦 ) |
| 139 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → 𝑢 ∈ 𝑥 ) |
| 140 |
|
ovexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) ∈ V ) |
| 141 |
134 137 138 139 140
|
ovmpod |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) = ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) ) |
| 142 |
141
|
adantllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) = ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) ) |
| 143 |
142
|
adantl3r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) = ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) ) |
| 144 |
143
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) = ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) ) |
| 145 |
130
|
oveqd |
⊢ ( 𝜑 → ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) = ( 𝑢 ( ·𝑠 ‘ 𝐵 ) 𝑣 ) ) |
| 146 |
145
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑢 ( .r ‘ 𝐸 ) 𝑣 ) = ( 𝑢 ( ·𝑠 ‘ 𝐵 ) 𝑣 ) ) |
| 147 |
144 146
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) = ( 𝑢 ( ·𝑠 ‘ 𝐵 ) 𝑣 ) ) |
| 148 |
126 133 147
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑖 ( ·𝑠 ‘ 𝐵 ) 𝑗 ) = ( 𝑢 ( ·𝑠 ‘ 𝐵 ) 𝑣 ) ) |
| 149 |
88 89 90 91 93 96 97 98 107 109 125 148
|
linds2eq |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) ∧ ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) ) → ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) |
| 150 |
149
|
ex |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ 𝑣 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝑥 ) → ( ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) → ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) ) |
| 151 |
150
|
anasss |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) ∧ ( 𝑣 ∈ 𝑦 ∧ 𝑢 ∈ 𝑥 ) ) → ( ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) → ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) ) |
| 152 |
151
|
ralrimivva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → ∀ 𝑣 ∈ 𝑦 ∀ 𝑢 ∈ 𝑥 ( ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) → ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) ) |
| 153 |
152
|
anasss |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → ∀ 𝑣 ∈ 𝑦 ∀ 𝑢 ∈ 𝑥 ( ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) → ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) ) |
| 154 |
153
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ∀ 𝑣 ∈ 𝑦 ∀ 𝑢 ∈ 𝑥 ( ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) → ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) ) |
| 155 |
|
f1opr |
⊢ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) –1-1→ ( Base ‘ 𝐴 ) ↔ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ∀ 𝑣 ∈ 𝑦 ∀ 𝑢 ∈ 𝑥 ( ( 𝑗 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑖 ) = ( 𝑣 ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) 𝑢 ) → ( 𝑗 = 𝑣 ∧ 𝑖 = 𝑢 ) ) ) ) |
| 156 |
87 154 155
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) –1-1→ ( Base ‘ 𝐴 ) ) |
| 157 |
60 39
|
xpexd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑦 × 𝑥 ) ∈ V ) |
| 158 |
|
f1rnen |
⊢ ( ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) –1-1→ ( Base ‘ 𝐴 ) ∧ ( 𝑦 × 𝑥 ) ∈ V ) → ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ≈ ( 𝑦 × 𝑥 ) ) |
| 159 |
156 157 158
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ≈ ( 𝑦 × 𝑥 ) ) |
| 160 |
|
hasheni |
⊢ ( ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ≈ ( 𝑦 × 𝑥 ) → ( ♯ ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) = ( ♯ ‘ ( 𝑦 × 𝑥 ) ) ) |
| 161 |
159 160
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ♯ ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) = ( ♯ ‘ ( 𝑦 × 𝑥 ) ) ) |
| 162 |
|
hashxpe |
⊢ ( ( 𝑦 ∈ ( LBasis ‘ 𝐵 ) ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) → ( ♯ ‘ ( 𝑦 × 𝑥 ) ) = ( ( ♯ ‘ 𝑦 ) ·e ( ♯ ‘ 𝑥 ) ) ) |
| 163 |
60 39 162
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ♯ ‘ ( 𝑦 × 𝑥 ) ) = ( ( ♯ ‘ 𝑦 ) ·e ( ♯ ‘ 𝑥 ) ) ) |
| 164 |
161 163
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ♯ ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) = ( ( ♯ ‘ 𝑦 ) ·e ( ♯ ‘ 𝑥 ) ) ) |
| 165 |
1 5
|
sralvec |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐾 ∈ DivRing ∧ 𝑉 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐴 ∈ LVec ) |
| 166 |
6 8 75 165
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ LVec ) |
| 167 |
166
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝐴 ∈ LVec ) |
| 168 |
|
lveclmod |
⊢ ( 𝐴 ∈ LVec → 𝐴 ∈ LMod ) |
| 169 |
166 168
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ LMod ) |
| 170 |
169
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝐴 ∈ LMod ) |
| 171 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝐸 ∈ DivRing ) |
| 172 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝐹 ∈ DivRing ) |
| 173 |
8
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝐾 ∈ DivRing ) |
| 174 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |
| 175 |
10
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) |
| 176 |
|
fveq2 |
⊢ ( 𝑤 = 𝑗 → ( 𝑓 ‘ 𝑤 ) = ( 𝑓 ‘ 𝑗 ) ) |
| 177 |
176
|
fveq1d |
⊢ ( 𝑤 = 𝑗 → ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) = ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑣 ) ) |
| 178 |
|
fveq2 |
⊢ ( 𝑣 = 𝑖 → ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑣 ) = ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ) |
| 179 |
177 178
|
cbvmpov |
⊢ ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) = ( 𝑗 ∈ 𝑦 , 𝑖 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ) |
| 180 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) |
| 181 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) |
| 182 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) |
| 183 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) |
| 184 |
1 2 3 4 5 171 172 173 174 175 85 179 180 181 182 183
|
fedgmullem2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) ) → 𝑐 = ( ( 𝑦 × 𝑥 ) × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) |
| 185 |
184
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ) → ( ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) → 𝑐 = ( ( 𝑦 × 𝑥 ) × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) |
| 186 |
185
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ∀ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ( ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) → 𝑐 = ( ( 𝑦 × 𝑥 ) × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) |
| 187 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 188 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
| 189 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) |
| 190 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
| 191 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐴 ) ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) |
| 192 |
|
eqid |
⊢ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) = ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) |
| 193 |
187 188 189 190 191 192
|
islindf4 |
⊢ ( ( 𝐴 ∈ LMod ∧ ( 𝑦 × 𝑥 ) ∈ V ∧ ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ 𝐴 ) ) → ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) LIndF 𝐴 ↔ ∀ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ( ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) → 𝑐 = ( ( 𝑦 × 𝑥 ) × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) ) |
| 194 |
193
|
biimpar |
⊢ ( ( ( 𝐴 ∈ LMod ∧ ( 𝑦 × 𝑥 ) ∈ V ∧ ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ 𝐴 ) ) ∧ ∀ 𝑐 ∈ ( Base ‘ ( ( Scalar ‘ 𝐴 ) freeLMod ( 𝑦 × 𝑥 ) ) ) ( ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 0g ‘ 𝐴 ) → 𝑐 = ( ( 𝑦 × 𝑥 ) × { ( 0g ‘ ( Scalar ‘ 𝐴 ) ) } ) ) ) → ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) LIndF 𝐴 ) |
| 195 |
170 157 87 186 194
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) LIndF 𝐴 ) |
| 196 |
73
|
anasss |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐸 ) ) |
| 197 |
196
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐸 ) ) |
| 198 |
85
|
rnmposs |
⊢ ( ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐸 ) → ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ⊆ ( Base ‘ 𝐸 ) ) |
| 199 |
197 198
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ⊆ ( Base ‘ 𝐸 ) ) |
| 200 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐴 ) ) |
| 201 |
199 200
|
sseqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ⊆ ( Base ‘ 𝐴 ) ) |
| 202 |
|
eqid |
⊢ ( LSpan ‘ 𝐴 ) = ( LSpan ‘ 𝐴 ) |
| 203 |
187 202
|
lspssv |
⊢ ( ( 𝐴 ∈ LMod ∧ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ⊆ ( Base ‘ 𝐴 ) ) → ( ( LSpan ‘ 𝐴 ) ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ⊆ ( Base ‘ 𝐴 ) ) |
| 204 |
170 201 203
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ( LSpan ‘ 𝐴 ) ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ⊆ ( Base ‘ 𝐴 ) ) |
| 205 |
|
simpl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ) |
| 206 |
205
|
ad4antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ) |
| 207 |
|
elmapi |
⊢ ( 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) → 𝑎 : 𝑦 ⟶ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 208 |
207
|
ad4antlr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → 𝑎 : 𝑦 ⟶ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 209 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → 𝑗 ∈ 𝑦 ) |
| 210 |
208 209
|
ffvelcdmd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( 𝑎 ‘ 𝑗 ) ∈ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 211 |
113
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) = ( Base ‘ 𝐶 ) ) |
| 212 |
206 211
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) = ( Base ‘ 𝐶 ) ) |
| 213 |
102
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( Base ‘ ( Scalar ‘ 𝐵 ) ) = ( Base ‘ 𝐶 ) ) |
| 214 |
212 213
|
eqtr4d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) = ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 215 |
210 214
|
eleqtrrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( 𝑎 ‘ 𝑗 ) ∈ ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) ) |
| 216 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
| 217 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
| 218 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐶 ) ) = ( 0g ‘ ( Scalar ‘ 𝐶 ) ) |
| 219 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐶 ) = ( ·𝑠 ‘ 𝐶 ) |
| 220 |
|
lveclmod |
⊢ ( 𝐶 ∈ LVec → 𝐶 ∈ LMod ) |
| 221 |
22 220
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
| 222 |
221
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝐶 ∈ LMod ) |
| 223 |
111 40 216 217 218 219 222 42
|
ellspds |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ( 𝑎 ‘ 𝑗 ) ∈ ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) ↔ ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) ) |
| 224 |
223
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑗 ) ∈ ( ( LSpan ‘ 𝐶 ) ‘ 𝑥 ) ) → ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
| 225 |
206 215 224
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
| 226 |
225
|
ralrimiva |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) → ∀ 𝑗 ∈ 𝑦 ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
| 227 |
|
fveq2 |
⊢ ( 𝑤 = 𝑗 → ( 𝑎 ‘ 𝑤 ) = ( 𝑎 ‘ 𝑗 ) ) |
| 228 |
|
fveq2 |
⊢ ( 𝑣 = 𝑖 → ( 𝑏 ‘ 𝑣 ) = ( 𝑏 ‘ 𝑖 ) ) |
| 229 |
|
id |
⊢ ( 𝑣 = 𝑖 → 𝑣 = 𝑖 ) |
| 230 |
228 229
|
oveq12d |
⊢ ( 𝑣 = 𝑖 → ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) = ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) |
| 231 |
230
|
cbvmptv |
⊢ ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) = ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) |
| 232 |
231
|
oveq2i |
⊢ ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) |
| 233 |
232
|
a1i |
⊢ ( 𝑤 = 𝑗 → ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) |
| 234 |
227 233
|
eqeq12d |
⊢ ( 𝑤 = 𝑗 → ( ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ↔ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
| 235 |
234
|
anbi2d |
⊢ ( 𝑤 = 𝑗 → ( ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ↔ ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) ) |
| 236 |
235
|
rexbidv |
⊢ ( 𝑤 = 𝑗 → ( ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ↔ ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) ) |
| 237 |
236
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ 𝑦 ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ↔ ∀ 𝑗 ∈ 𝑦 ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
| 238 |
|
vex |
⊢ 𝑦 ∈ V |
| 239 |
|
breq1 |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑤 ) → ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ↔ ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) |
| 240 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑤 ) → ( 𝑏 ‘ 𝑣 ) = ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) |
| 241 |
240
|
oveq1d |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑤 ) → ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) = ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) |
| 242 |
241
|
mpteq2dv |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑤 ) → ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) = ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) |
| 243 |
242
|
oveq2d |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑤 ) → ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) |
| 244 |
243
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑤 ) → ( ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ↔ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) |
| 245 |
239 244
|
anbi12d |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑤 ) → ( ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ↔ ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ) |
| 246 |
238 245
|
ac6s |
⊢ ( ∀ 𝑤 ∈ 𝑦 ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ) |
| 247 |
237 246
|
sylbir |
⊢ ( ∀ 𝑗 ∈ 𝑦 ∃ 𝑏 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ( 𝑏 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( 𝑏 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ) |
| 248 |
226 247
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ) |
| 249 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) |
| 250 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → 𝑗 ∈ 𝑦 ) |
| 251 |
249 250
|
ffvelcdmd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑗 ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) |
| 252 |
|
elmapi |
⊢ ( ( 𝑓 ‘ 𝑗 ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) → ( 𝑓 ‘ 𝑗 ) : 𝑥 ⟶ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 253 |
251 252
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ 𝑗 ∈ 𝑦 ) ∧ 𝑖 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑗 ) : 𝑥 ⟶ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 254 |
253
|
anasss |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → ( 𝑓 ‘ 𝑗 ) : 𝑥 ⟶ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 255 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → 𝑖 ∈ 𝑥 ) |
| 256 |
254 255
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 257 |
74 77
|
srasca |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝑉 ) = ( Scalar ‘ 𝐴 ) ) |
| 258 |
5 257
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝐴 ) ) |
| 259 |
48 51
|
srasca |
⊢ ( 𝜑 → ( 𝐹 ↾s 𝑉 ) = ( Scalar ‘ 𝐶 ) ) |
| 260 |
18 259
|
eqtr3d |
⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝐶 ) ) |
| 261 |
258 260
|
eqtr3d |
⊢ ( 𝜑 → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐶 ) ) |
| 262 |
261
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 263 |
262
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 264 |
256 263
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ( 𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ) ) → ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 265 |
264
|
ralrimivva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) → ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 266 |
179
|
fmpo |
⊢ ( ∀ 𝑗 ∈ 𝑦 ∀ 𝑖 ∈ 𝑥 ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↔ ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 267 |
265 266
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) → ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 268 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) → ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∈ V ) |
| 269 |
157
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) → ( 𝑦 × 𝑥 ) ∈ V ) |
| 270 |
268 269
|
elmapd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) → ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ↔ ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) : ( 𝑦 × 𝑥 ) ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 271 |
267 270
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) → ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ) |
| 272 |
271
|
ad5ant15 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) → ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ) |
| 273 |
272
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ) |
| 274 |
273
|
adantl3r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ) |
| 275 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑐 = ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ) → 𝑐 = ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ) |
| 276 |
275
|
breq1d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑐 = ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ) → ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ↔ ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 277 |
275
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑐 = ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ) → ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) = ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) |
| 278 |
277
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑐 = ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ) → ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) = ( 𝐴 Σg ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) |
| 279 |
278
|
eqeq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑐 = ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ) → ( 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ↔ 𝑧 = ( 𝐴 Σg ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) |
| 280 |
276 279
|
anbi12d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑐 = ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ) → ( ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ↔ ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) ) |
| 281 |
6
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝐸 ∈ DivRing ) |
| 282 |
7
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝐹 ∈ DivRing ) |
| 283 |
8
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝐾 ∈ DivRing ) |
| 284 |
9
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |
| 285 |
10
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) |
| 286 |
39
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) |
| 287 |
60
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) |
| 288 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑧 ∈ ( Base ‘ 𝐴 ) ) |
| 289 |
288
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑧 ∈ ( Base ‘ 𝐴 ) ) |
| 290 |
207
|
ad5antlr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑎 : 𝑦 ⟶ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 291 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
| 292 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) |
| 293 |
|
id |
⊢ ( 𝑤 = 𝑗 → 𝑤 = 𝑗 ) |
| 294 |
227 293
|
oveq12d |
⊢ ( 𝑤 = 𝑗 → ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) = ( ( 𝑎 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
| 295 |
294
|
cbvmptv |
⊢ ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) = ( 𝑗 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
| 296 |
295
|
oveq2i |
⊢ ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) = ( 𝐵 Σg ( 𝑗 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) |
| 297 |
292 296
|
eqtrdi |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑧 = ( 𝐵 Σg ( 𝑗 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) ) |
| 298 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) |
| 299 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) |
| 300 |
176
|
breq1d |
⊢ ( 𝑤 = 𝑗 → ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ↔ ( 𝑓 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) |
| 301 |
|
fveq2 |
⊢ ( 𝑣 = 𝑖 → ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) = ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑖 ) ) |
| 302 |
301 229
|
oveq12d |
⊢ ( 𝑣 = 𝑖 → ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) = ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) |
| 303 |
302
|
cbvmptv |
⊢ ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) = ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) |
| 304 |
176
|
fveq1d |
⊢ ( 𝑤 = 𝑗 → ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑖 ) = ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ) |
| 305 |
304
|
oveq1d |
⊢ ( 𝑤 = 𝑗 → ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) = ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) |
| 306 |
305
|
mpteq2dv |
⊢ ( 𝑤 = 𝑗 → ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) = ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) |
| 307 |
303 306
|
eqtrid |
⊢ ( 𝑤 = 𝑗 → ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) = ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) |
| 308 |
307
|
oveq2d |
⊢ ( 𝑤 = 𝑗 → ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) |
| 309 |
227 308
|
eqeq12d |
⊢ ( 𝑤 = 𝑗 → ( ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ↔ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
| 310 |
300 309
|
anbi12d |
⊢ ( 𝑤 = 𝑗 → ( ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ↔ ( ( 𝑓 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) ) |
| 311 |
310
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ↔ ∀ 𝑗 ∈ 𝑦 ( ( 𝑓 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
| 312 |
299 311
|
sylib |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → ∀ 𝑗 ∈ 𝑦 ( ( 𝑓 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
| 313 |
312
|
r19.21bi |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( ( 𝑓 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) ) |
| 314 |
313
|
simpld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( 𝑓 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 315 |
313
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ∧ 𝑗 ∈ 𝑦 ) → ( 𝑎 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) |
| 316 |
1 2 3 4 5 281 282 283 284 285 85 179 286 287 289 290 291 297 298 314 315
|
fedgmullem1 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( ( 𝑤 ∈ 𝑦 , 𝑣 ∈ 𝑥 ↦ ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ) ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) |
| 317 |
274 280 316
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) → ∃ 𝑐 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) |
| 318 |
317
|
anasss |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ∧ ( 𝑓 : 𝑦 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑦 ( ( 𝑓 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝑎 ‘ 𝑤 ) = ( 𝐶 Σg ( 𝑣 ∈ 𝑥 ↦ ( ( ( 𝑓 ‘ 𝑤 ) ‘ 𝑣 ) ( ·𝑠 ‘ 𝐶 ) 𝑣 ) ) ) ) ) ) → ∃ 𝑐 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) |
| 319 |
248 318
|
exlimddv |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) → ∃ 𝑐 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) |
| 320 |
319
|
anasss |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ) ∧ ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ) → ∃ 𝑐 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) |
| 321 |
|
eqid |
⊢ ( LSpan ‘ 𝐵 ) = ( LSpan ‘ 𝐵 ) |
| 322 |
61 30 321
|
islbs4 |
⊢ ( 𝑦 ∈ ( LBasis ‘ 𝐵 ) ↔ ( 𝑦 ∈ ( LIndS ‘ 𝐵 ) ∧ ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) = ( Base ‘ 𝐵 ) ) ) |
| 323 |
60 322
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑦 ∈ ( LIndS ‘ 𝐵 ) ∧ ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) = ( Base ‘ 𝐵 ) ) ) |
| 324 |
323
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) = ( Base ‘ 𝐵 ) ) |
| 325 |
324
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) = ( Base ‘ 𝐵 ) ) |
| 326 |
78 65
|
eqtr3d |
⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 327 |
326
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 328 |
325 327
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) = ( Base ‘ 𝐴 ) ) |
| 329 |
288 328
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑧 ∈ ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) ) |
| 330 |
|
eqid |
⊢ ( Scalar ‘ 𝐵 ) = ( Scalar ‘ 𝐵 ) |
| 331 |
|
lveclmod |
⊢ ( 𝐵 ∈ LVec → 𝐵 ∈ LMod ) |
| 332 |
29 331
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ LMod ) |
| 333 |
332
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → 𝐵 ∈ LMod ) |
| 334 |
321 61 88 330 91 89 333 63
|
ellspds |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑧 ∈ ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) ↔ ∃ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ) ) |
| 335 |
334
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( ( LSpan ‘ 𝐵 ) ‘ 𝑦 ) ) → ∃ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ) |
| 336 |
205 329 335
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ∃ 𝑎 ∈ ( ( Base ‘ ( Scalar ‘ 𝐵 ) ) ↑m 𝑦 ) ( 𝑎 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∧ 𝑧 = ( 𝐵 Σg ( 𝑤 ∈ 𝑦 ↦ ( ( 𝑎 ‘ 𝑤 ) ( ·𝑠 ‘ 𝐵 ) 𝑤 ) ) ) ) ) |
| 337 |
320 336
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ∃ 𝑐 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) |
| 338 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) |
| 339 |
202 187 338 188 191 189 87 170 157
|
ellspd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑧 ∈ ( ( LSpan ‘ 𝐴 ) ‘ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) “ ( 𝑦 × 𝑥 ) ) ) ↔ ∃ 𝑐 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) ) |
| 340 |
339
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑧 ∈ ( ( LSpan ‘ 𝐴 ) ‘ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) “ ( 𝑦 × 𝑥 ) ) ) ↔ ∃ 𝑐 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑦 × 𝑥 ) ) ( 𝑐 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑧 = ( 𝐴 Σg ( 𝑐 ∘f ( ·𝑠 ‘ 𝐴 ) ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) ) ) ) |
| 341 |
337 340
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑧 ∈ ( ( LSpan ‘ 𝐴 ) ‘ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) “ ( 𝑦 × 𝑥 ) ) ) ) |
| 342 |
87
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) Fn ( 𝑦 × 𝑥 ) ) |
| 343 |
342
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) Fn ( 𝑦 × 𝑥 ) ) |
| 344 |
|
fnima |
⊢ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) Fn ( 𝑦 × 𝑥 ) → ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) “ ( 𝑦 × 𝑥 ) ) = ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) |
| 345 |
343 344
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) “ ( 𝑦 × 𝑥 ) ) = ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) |
| 346 |
345
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ( LSpan ‘ 𝐴 ) ‘ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) “ ( 𝑦 × 𝑥 ) ) ) = ( ( LSpan ‘ 𝐴 ) ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) |
| 347 |
341 346
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑧 ∈ ( ( LSpan ‘ 𝐴 ) ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) |
| 348 |
204 347
|
eqelssd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ( LSpan ‘ 𝐴 ) ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) = ( Base ‘ 𝐴 ) ) |
| 349 |
|
eqid |
⊢ ( Base ‘ ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) = ( Base ‘ ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) |
| 350 |
|
drngnzr |
⊢ ( 𝐾 ∈ DivRing → 𝐾 ∈ NzRing ) |
| 351 |
8 350
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ NzRing ) |
| 352 |
258 351
|
eqeltrrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝐴 ) ∈ NzRing ) |
| 353 |
352
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( Scalar ‘ 𝐴 ) ∈ NzRing ) |
| 354 |
187 349 188 189 190 191 202 170 353 157 156
|
lindflbs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ∈ ( LBasis ‘ 𝐴 ) ↔ ( ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) LIndF 𝐴 ∧ ( ( LSpan ‘ 𝐴 ) ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) = ( Base ‘ 𝐴 ) ) ) ) |
| 355 |
195 348 354
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ∈ ( LBasis ‘ 𝐴 ) ) |
| 356 |
|
eqid |
⊢ ( LBasis ‘ 𝐴 ) = ( LBasis ‘ 𝐴 ) |
| 357 |
356
|
dimval |
⊢ ( ( 𝐴 ∈ LVec ∧ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ∈ ( LBasis ‘ 𝐴 ) ) → ( dim ‘ 𝐴 ) = ( ♯ ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) |
| 358 |
167 355 357
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( dim ‘ 𝐴 ) = ( ♯ ‘ ran ( 𝑤 ∈ 𝑦 , 𝑡 ∈ 𝑥 ↦ ( 𝑡 ( .r ‘ 𝐸 ) 𝑤 ) ) ) ) |
| 359 |
30
|
dimval |
⊢ ( ( 𝐵 ∈ LVec ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( dim ‘ 𝐵 ) = ( ♯ ‘ 𝑦 ) ) |
| 360 |
92 60 359
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( dim ‘ 𝐵 ) = ( ♯ ‘ 𝑦 ) ) |
| 361 |
23
|
dimval |
⊢ ( ( 𝐶 ∈ LVec ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) → ( dim ‘ 𝐶 ) = ( ♯ ‘ 𝑥 ) ) |
| 362 |
110 39 361
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( dim ‘ 𝐶 ) = ( ♯ ‘ 𝑥 ) ) |
| 363 |
360 362
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( ( dim ‘ 𝐵 ) ·e ( dim ‘ 𝐶 ) ) = ( ( ♯ ‘ 𝑦 ) ·e ( ♯ ‘ 𝑥 ) ) ) |
| 364 |
164 358 363
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( LBasis ‘ 𝐵 ) ) → ( dim ‘ 𝐴 ) = ( ( dim ‘ 𝐵 ) ·e ( dim ‘ 𝐶 ) ) ) |
| 365 |
35 364
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐶 ) ) → ( dim ‘ 𝐴 ) = ( ( dim ‘ 𝐵 ) ·e ( dim ‘ 𝐶 ) ) ) |
| 366 |
27 365
|
exlimddv |
⊢ ( 𝜑 → ( dim ‘ 𝐴 ) = ( ( dim ‘ 𝐵 ) ·e ( dim ‘ 𝐶 ) ) ) |