Step |
Hyp |
Ref |
Expression |
1 |
|
fedgmul.a |
⊢ 𝐴 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑉 ) |
2 |
|
fedgmul.b |
⊢ 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) |
3 |
|
fedgmul.c |
⊢ 𝐶 = ( ( subringAlg ‘ 𝐹 ) ‘ 𝑉 ) |
4 |
|
fedgmul.f |
⊢ 𝐹 = ( 𝐸 ↾s 𝑈 ) |
5 |
|
fedgmul.k |
⊢ 𝐾 = ( 𝐸 ↾s 𝑉 ) |
6 |
|
fedgmul.1 |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
7 |
|
fedgmul.2 |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
8 |
|
fedgmul.3 |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
9 |
|
fedgmul.4 |
⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |
10 |
|
fedgmul.5 |
⊢ ( 𝜑 → 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) |
11 |
|
fedgmullem.d |
⊢ 𝐷 = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) |
12 |
|
fedgmullem.h |
⊢ 𝐻 = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ) |
13 |
|
fedgmullem.x |
⊢ ( 𝜑 → 𝑋 ∈ ( LBasis ‘ 𝐶 ) ) |
14 |
|
fedgmullem.y |
⊢ ( 𝜑 → 𝑌 ∈ ( LBasis ‘ 𝐵 ) ) |
15 |
|
fedgmullem1.a |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐴 ) ) |
16 |
|
fedgmullem1.l |
⊢ ( 𝜑 → 𝐿 : 𝑌 ⟶ ( Base ‘ ( Scalar ‘ 𝐵 ) ) ) |
17 |
|
fedgmullem1.1 |
⊢ ( 𝜑 → 𝐿 finSupp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
18 |
|
fedgmullem1.z |
⊢ ( 𝜑 → 𝑍 = ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐿 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) ) |
19 |
|
fedgmullem1.g |
⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) |
20 |
|
fedgmullem1.2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) |
21 |
|
fedgmullem1.3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐿 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) |
22 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) |
23 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑗 ∈ 𝑌 ) |
24 |
22 23
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) |
25 |
|
elmapi |
⊢ ( ( 𝐺 ‘ 𝑗 ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) → ( 𝐺 ‘ 𝑗 ) : 𝑋 ⟶ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
26 |
24 25
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑗 ) : 𝑋 ⟶ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
27 |
26
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → ( 𝐺 ‘ 𝑗 ) : 𝑋 ⟶ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
28 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → 𝑖 ∈ 𝑋 ) |
29 |
27 28
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
30 |
1
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑉 ) ) |
31 |
4
|
subsubrg |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( 𝑉 ∈ ( SubRing ‘ 𝐹 ) ↔ ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) ) ) |
32 |
31
|
biimpa |
⊢ ( ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) → ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) ) |
33 |
9 10 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) ) |
34 |
33
|
simpld |
⊢ ( 𝜑 → 𝑉 ∈ ( SubRing ‘ 𝐸 ) ) |
35 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
36 |
35
|
subrgss |
⊢ ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) → 𝑉 ⊆ ( Base ‘ 𝐸 ) ) |
37 |
34 36
|
syl |
⊢ ( 𝜑 → 𝑉 ⊆ ( Base ‘ 𝐸 ) ) |
38 |
30 37
|
srasca |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝑉 ) = ( Scalar ‘ 𝐴 ) ) |
39 |
5 38
|
syl5eq |
⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝐴 ) ) |
40 |
33
|
simprd |
⊢ ( 𝜑 → 𝑉 ⊆ 𝑈 ) |
41 |
|
ressabs |
⊢ ( ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝐸 ↾s 𝑈 ) ↾s 𝑉 ) = ( 𝐸 ↾s 𝑉 ) ) |
42 |
9 40 41
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 ↾s 𝑈 ) ↾s 𝑉 ) = ( 𝐸 ↾s 𝑉 ) ) |
43 |
4
|
oveq1i |
⊢ ( 𝐹 ↾s 𝑉 ) = ( ( 𝐸 ↾s 𝑈 ) ↾s 𝑉 ) |
44 |
42 43 5
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐹 ↾s 𝑉 ) = 𝐾 ) |
45 |
3
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( ( subringAlg ‘ 𝐹 ) ‘ 𝑉 ) ) |
46 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
47 |
46
|
subrgss |
⊢ ( 𝑉 ∈ ( SubRing ‘ 𝐹 ) → 𝑉 ⊆ ( Base ‘ 𝐹 ) ) |
48 |
10 47
|
syl |
⊢ ( 𝜑 → 𝑉 ⊆ ( Base ‘ 𝐹 ) ) |
49 |
45 48
|
srasca |
⊢ ( 𝜑 → ( 𝐹 ↾s 𝑉 ) = ( Scalar ‘ 𝐶 ) ) |
50 |
44 49
|
eqtr3d |
⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝐶 ) ) |
51 |
39 50
|
eqtr3d |
⊢ ( 𝜑 → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐶 ) ) |
52 |
51
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
54 |
29 53
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
55 |
54
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) → ∀ 𝑗 ∈ 𝑌 ∀ 𝑖 ∈ 𝑋 ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
56 |
12
|
fmpo |
⊢ ( ∀ 𝑗 ∈ 𝑌 ∀ 𝑖 ∈ 𝑋 ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↔ 𝐻 : ( 𝑌 × 𝑋 ) ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
57 |
55 56
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) → 𝐻 : ( 𝑌 × 𝑋 ) ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
58 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) → ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∈ V ) |
59 |
14 13
|
xpexd |
⊢ ( 𝜑 → ( 𝑌 × 𝑋 ) ∈ V ) |
60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) → ( 𝑌 × 𝑋 ) ∈ V ) |
61 |
58 60
|
elmapd |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) → ( 𝐻 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑌 × 𝑋 ) ) ↔ 𝐻 : ( 𝑌 × 𝑋 ) ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
62 |
57 61
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐺 : 𝑌 ⟶ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) → 𝐻 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑌 × 𝑋 ) ) ) |
63 |
19 62
|
mpdan |
⊢ ( 𝜑 → 𝐻 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑌 × 𝑋 ) ) ) |
64 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝜑 ) |
65 |
64
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝜑 ) |
66 |
19
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ) |
67 |
66 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑗 ) : 𝑋 ⟶ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑗 ) : 𝑋 ⟶ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
69 |
52
|
feq3d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑗 ) : 𝑋 ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↔ ( 𝐺 ‘ 𝑗 ) : 𝑋 ⟶ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) ) |
70 |
69
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑗 ) : 𝑋 ⟶ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) → ( 𝐺 ‘ 𝑗 ) : 𝑋 ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
71 |
65 68 70
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑗 ) : 𝑋 ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
72 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) |
73 |
71 72
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
74 |
73
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ∀ 𝑖 ∈ 𝑋 ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
75 |
74
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑌 ∀ 𝑖 ∈ 𝑋 ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
76 |
75 56
|
sylib |
⊢ ( 𝜑 → 𝐻 : ( 𝑌 × 𝑋 ) ⟶ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
77 |
76
|
ffund |
⊢ ( 𝜑 → Fun 𝐻 ) |
78 |
|
drngring |
⊢ ( 𝐸 ∈ DivRing → 𝐸 ∈ Ring ) |
79 |
6 78
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ Ring ) |
80 |
|
ringgrp |
⊢ ( 𝐸 ∈ Ring → 𝐸 ∈ Grp ) |
81 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
82 |
35 81
|
grpidcl |
⊢ ( 𝐸 ∈ Grp → ( 0g ‘ 𝐸 ) ∈ ( Base ‘ 𝐸 ) ) |
83 |
79 80 82
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) ∈ ( Base ‘ 𝐸 ) ) |
84 |
17
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐿 supp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ∈ Fin ) |
85 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ ( 𝐿 supp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ) ) → 𝜑 ) |
86 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ ( 𝐿 supp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ) ) → 𝑗 ∈ ( 𝑌 ∖ ( 𝐿 supp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ) ) |
87 |
86
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ ( 𝐿 supp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ) ) → 𝑗 ∈ 𝑌 ) |
88 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐿 supp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ⊆ ( 𝐿 supp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ) |
89 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ∈ V ) |
90 |
16 88 14 89
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ ( 𝐿 supp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ) ) → ( 𝐿 ‘ 𝑗 ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
91 |
87 21
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ ( 𝐿 supp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ) ) → ( 𝐿 ‘ 𝑗 ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) |
92 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) ) |
93 |
35
|
subrgss |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
94 |
9 93
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
95 |
92 94
|
srasca |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝑈 ) = ( Scalar ‘ 𝐵 ) ) |
96 |
4 95
|
syl5eq |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐵 ) ) |
97 |
96
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) |
98 |
3 7 10
|
drgext0g |
⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐶 ) ) |
99 |
97 98
|
eqtr3d |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐵 ) ) = ( 0g ‘ 𝐶 ) ) |
100 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ ( 𝐿 supp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ) ) → ( 0g ‘ ( Scalar ‘ 𝐵 ) ) = ( 0g ‘ 𝐶 ) ) |
101 |
90 91 100
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ ( 𝐿 supp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ) ) → ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 0g ‘ 𝐶 ) ) |
102 |
|
breq1 |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝑗 ) → ( 𝑔 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ↔ ( 𝐺 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) |
103 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝑗 ) → ( 𝑔 ‘ 𝑖 ) = ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ) |
104 |
103
|
oveq1d |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝑗 ) → ( ( 𝑔 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) = ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) |
105 |
104
|
mpteq2dv |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝑗 ) → ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑔 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) |
106 |
105
|
oveq2d |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝑗 ) → ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑔 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) |
107 |
106
|
eqeq1d |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝑗 ) → ( ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑔 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 0g ‘ 𝐶 ) ↔ ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 0g ‘ 𝐶 ) ) ) |
108 |
102 107
|
anbi12d |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝑗 ) → ( ( 𝑔 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑔 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 0g ‘ 𝐶 ) ) ↔ ( ( 𝐺 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 0g ‘ 𝐶 ) ) ) ) |
109 |
|
eqeq1 |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝑗 ) → ( 𝑔 = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ↔ ( 𝐺 ‘ 𝑗 ) = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ) |
110 |
108 109
|
imbi12d |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝑗 ) → ( ( ( 𝑔 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑔 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 0g ‘ 𝐶 ) ) → 𝑔 = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ↔ ( ( ( 𝐺 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 0g ‘ 𝐶 ) ) → ( 𝐺 ‘ 𝑗 ) = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ) ) |
111 |
44 8
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ↾s 𝑉 ) ∈ DivRing ) |
112 |
|
eqid |
⊢ ( 𝐹 ↾s 𝑉 ) = ( 𝐹 ↾s 𝑉 ) |
113 |
3 112
|
sralvec |
⊢ ( ( 𝐹 ∈ DivRing ∧ ( 𝐹 ↾s 𝑉 ) ∈ DivRing ∧ 𝑉 ∈ ( SubRing ‘ 𝐹 ) ) → 𝐶 ∈ LVec ) |
114 |
7 111 10 113
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ∈ LVec ) |
115 |
|
lveclmod |
⊢ ( 𝐶 ∈ LVec → 𝐶 ∈ LMod ) |
116 |
114 115
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
117 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝐶 ∈ LMod ) |
118 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
119 |
|
eqid |
⊢ ( LBasis ‘ 𝐶 ) = ( LBasis ‘ 𝐶 ) |
120 |
118 119
|
lbsss |
⊢ ( 𝑋 ∈ ( LBasis ‘ 𝐶 ) → 𝑋 ⊆ ( Base ‘ 𝐶 ) ) |
121 |
13 120
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ ( Base ‘ 𝐶 ) ) |
122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑋 ⊆ ( Base ‘ 𝐶 ) ) |
123 |
|
eqid |
⊢ ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 ) |
124 |
118 119 123
|
islbs4 |
⊢ ( 𝑋 ∈ ( LBasis ‘ 𝐶 ) ↔ ( 𝑋 ∈ ( LIndS ‘ 𝐶 ) ∧ ( ( LSpan ‘ 𝐶 ) ‘ 𝑋 ) = ( Base ‘ 𝐶 ) ) ) |
125 |
13 124
|
sylib |
⊢ ( 𝜑 → ( 𝑋 ∈ ( LIndS ‘ 𝐶 ) ∧ ( ( LSpan ‘ 𝐶 ) ‘ 𝑋 ) = ( Base ‘ 𝐶 ) ) ) |
126 |
125
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ ( LIndS ‘ 𝐶 ) ) |
127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑋 ∈ ( LIndS ‘ 𝐶 ) ) |
128 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
129 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
130 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐶 ) = ( ·𝑠 ‘ 𝐶 ) |
131 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
132 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐶 ) ) = ( 0g ‘ ( Scalar ‘ 𝐶 ) ) |
133 |
118 128 129 130 131 132
|
islinds5 |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝑋 ⊆ ( Base ‘ 𝐶 ) ) → ( 𝑋 ∈ ( LIndS ‘ 𝐶 ) ↔ ∀ 𝑔 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ( ( 𝑔 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑔 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 0g ‘ 𝐶 ) ) → 𝑔 = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ) ) |
134 |
133
|
biimpa |
⊢ ( ( ( 𝐶 ∈ LMod ∧ 𝑋 ⊆ ( Base ‘ 𝐶 ) ) ∧ 𝑋 ∈ ( LIndS ‘ 𝐶 ) ) → ∀ 𝑔 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ( ( 𝑔 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑔 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 0g ‘ 𝐶 ) ) → 𝑔 = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ) |
135 |
117 122 127 134
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ∀ 𝑔 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↑m 𝑋 ) ( ( 𝑔 finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( 𝑔 ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 0g ‘ 𝐶 ) ) → 𝑔 = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ) |
136 |
110 135 66
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( ( 𝐺 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 0g ‘ 𝐶 ) ) → ( 𝐺 ‘ 𝑗 ) = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ) |
137 |
20 136
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 0g ‘ 𝐶 ) → ( 𝐺 ‘ 𝑗 ) = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ) |
138 |
137
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 0g ‘ 𝐶 ) ) → ( 𝐺 ‘ 𝑗 ) = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) |
139 |
85 87 101 138
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑌 ∖ ( 𝐿 supp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ) ) → ( 𝐺 ‘ 𝑗 ) = ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) |
140 |
19 139
|
suppss |
⊢ ( 𝜑 → ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ⊆ ( 𝐿 supp ( 0g ‘ ( Scalar ‘ 𝐵 ) ) ) ) |
141 |
84 140
|
ssfid |
⊢ ( 𝜑 → ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ∈ Fin ) |
142 |
|
suppssdm |
⊢ ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ⊆ dom 𝐺 |
143 |
142 19
|
fssdm |
⊢ ( 𝜑 → ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ⊆ 𝑌 ) |
144 |
143
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ) → 𝑤 ∈ 𝑌 ) |
145 |
|
eleq1w |
⊢ ( 𝑗 = 𝑤 → ( 𝑗 ∈ 𝑌 ↔ 𝑤 ∈ 𝑌 ) ) |
146 |
145
|
anbi2d |
⊢ ( 𝑗 = 𝑤 → ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ↔ ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ) ) |
147 |
|
fveq2 |
⊢ ( 𝑗 = 𝑤 → ( 𝐺 ‘ 𝑗 ) = ( 𝐺 ‘ 𝑤 ) ) |
148 |
147
|
breq1d |
⊢ ( 𝑗 = 𝑤 → ( ( 𝐺 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ↔ ( 𝐺 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) |
149 |
146 148
|
imbi12d |
⊢ ( 𝑗 = 𝑤 → ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ↔ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) ) |
150 |
149 20
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑤 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) |
151 |
150
|
fsuppimpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ( 𝐺 ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ Fin ) |
152 |
144 151
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ) → ( ( 𝐺 ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ Fin ) |
153 |
152
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ( ( 𝐺 ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ Fin ) |
154 |
|
iunfi |
⊢ ( ( ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ∈ Fin ∧ ∀ 𝑤 ∈ ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ( ( 𝐺 ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ Fin ) → ∪ 𝑤 ∈ ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ( ( 𝐺 ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ Fin ) |
155 |
141 153 154
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑤 ∈ ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ( ( 𝐺 ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ Fin ) |
156 |
|
xpfi |
⊢ ( ( ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ∈ Fin ∧ ∪ 𝑤 ∈ ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ( ( 𝐺 ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ Fin ) → ( ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) × ∪ 𝑤 ∈ ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ( ( 𝐺 ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) ∈ Fin ) |
157 |
141 155 156
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) × ∪ 𝑤 ∈ ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ( ( 𝐺 ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) ∈ Fin ) |
158 |
|
fveq2 |
⊢ ( 𝑣 = 𝑗 → ( 𝐺 ‘ 𝑣 ) = ( 𝐺 ‘ 𝑗 ) ) |
159 |
158
|
fveq1d |
⊢ ( 𝑣 = 𝑗 → ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) = ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑢 ) ) |
160 |
159
|
mpteq2dv |
⊢ ( 𝑣 = 𝑗 → ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) = ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑢 ) ) ) |
161 |
|
fveq2 |
⊢ ( 𝑢 = 𝑖 → ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑢 ) = ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ) |
162 |
161
|
cbvmptv |
⊢ ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑢 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ) |
163 |
160 162
|
eqtrdi |
⊢ ( 𝑣 = 𝑗 → ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ) ) |
164 |
163
|
cbvmptv |
⊢ ( 𝑣 ∈ 𝑌 ↦ ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) ) = ( 𝑗 ∈ 𝑌 ↦ ( 𝑖 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ) ) |
165 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ∈ V ) |
166 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ∈ V ) |
167 |
12 164 14 13 165 166
|
suppovss |
⊢ ( 𝜑 → ( 𝐻 supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ⊆ ( ( ( 𝑣 ∈ 𝑌 ↦ ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) ) supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) × ∪ 𝑤 ∈ ( ( 𝑣 ∈ 𝑌 ↦ ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) ) supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ( ( ( 𝑣 ∈ 𝑌 ↦ ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) ) ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) ) |
168 |
5 81
|
subrg0 |
⊢ ( 𝑉 ∈ ( SubRing ‘ 𝐸 ) → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐾 ) ) |
169 |
34 168
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐾 ) ) |
170 |
50
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) |
171 |
169 170
|
eqtr2d |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐶 ) ) = ( 0g ‘ 𝐸 ) ) |
172 |
171
|
oveq2d |
⊢ ( 𝜑 → ( 𝐻 supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) = ( 𝐻 supp ( 0g ‘ 𝐸 ) ) ) |
173 |
19
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑣 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑣 ) ) ) |
174 |
|
eleq1w |
⊢ ( 𝑗 = 𝑣 → ( 𝑗 ∈ 𝑌 ↔ 𝑣 ∈ 𝑌 ) ) |
175 |
174
|
anbi2d |
⊢ ( 𝑗 = 𝑣 → ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ↔ ( 𝜑 ∧ 𝑣 ∈ 𝑌 ) ) ) |
176 |
|
fveq2 |
⊢ ( 𝑗 = 𝑣 → ( 𝐺 ‘ 𝑗 ) = ( 𝐺 ‘ 𝑣 ) ) |
177 |
176
|
feq1d |
⊢ ( 𝑗 = 𝑣 → ( ( 𝐺 ‘ 𝑗 ) : 𝑋 ⟶ ( Base ‘ 𝐸 ) ↔ ( 𝐺 ‘ 𝑣 ) : 𝑋 ⟶ ( Base ‘ 𝐸 ) ) ) |
178 |
175 177
|
imbi12d |
⊢ ( 𝑗 = 𝑣 → ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑗 ) : 𝑋 ⟶ ( Base ‘ 𝐸 ) ) ↔ ( ( 𝜑 ∧ 𝑣 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑣 ) : 𝑋 ⟶ ( Base ‘ 𝐸 ) ) ) ) |
179 |
5 35
|
ressbas2 |
⊢ ( 𝑉 ⊆ ( Base ‘ 𝐸 ) → 𝑉 = ( Base ‘ 𝐾 ) ) |
180 |
37 179
|
syl |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝐾 ) ) |
181 |
50
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
182 |
180 181
|
eqtrd |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
183 |
182 37
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐸 ) ) |
184 |
183
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( Base ‘ ( Scalar ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐸 ) ) |
185 |
67 184
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑗 ) : 𝑋 ⟶ ( Base ‘ 𝐸 ) ) |
186 |
178 185
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑣 ) : 𝑋 ⟶ ( Base ‘ 𝐸 ) ) |
187 |
186
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑣 ) = ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) ) |
188 |
187
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑣 ) ) = ( 𝑣 ∈ 𝑌 ↦ ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) ) ) |
189 |
173 188
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝑌 ↦ ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) ) = 𝐺 ) |
190 |
189
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝑌 ↦ ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) ) supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) = ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ) |
191 |
189
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝑌 ↦ ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) ) ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) |
192 |
191
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑣 ∈ 𝑌 ↦ ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) ) ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) = ( ( 𝐺 ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) |
193 |
190 192
|
iuneq12d |
⊢ ( 𝜑 → ∪ 𝑤 ∈ ( ( 𝑣 ∈ 𝑌 ↦ ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) ) supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ( ( ( 𝑣 ∈ 𝑌 ↦ ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) ) ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) = ∪ 𝑤 ∈ ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ( ( 𝐺 ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) |
194 |
190 193
|
xpeq12d |
⊢ ( 𝜑 → ( ( ( 𝑣 ∈ 𝑌 ↦ ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) ) supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) × ∪ 𝑤 ∈ ( ( 𝑣 ∈ 𝑌 ↦ ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) ) supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ( ( ( 𝑣 ∈ 𝑌 ↦ ( 𝑢 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑣 ) ‘ 𝑢 ) ) ) ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) = ( ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) × ∪ 𝑤 ∈ ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ( ( 𝐺 ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) ) |
195 |
167 172 194
|
3sstr3d |
⊢ ( 𝜑 → ( 𝐻 supp ( 0g ‘ 𝐸 ) ) ⊆ ( ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) × ∪ 𝑤 ∈ ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ( ( 𝐺 ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) ) |
196 |
|
suppssfifsupp |
⊢ ( ( ( 𝐻 ∈ ( ( Base ‘ ( Scalar ‘ 𝐴 ) ) ↑m ( 𝑌 × 𝑋 ) ) ∧ Fun 𝐻 ∧ ( 0g ‘ 𝐸 ) ∈ ( Base ‘ 𝐸 ) ) ∧ ( ( ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) × ∪ 𝑤 ∈ ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ( ( 𝐺 ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) ∈ Fin ∧ ( 𝐻 supp ( 0g ‘ 𝐸 ) ) ⊆ ( ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) × ∪ 𝑤 ∈ ( 𝐺 supp ( 𝑋 × { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ) ( ( 𝐺 ‘ 𝑤 ) supp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ) ) ) → 𝐻 finSupp ( 0g ‘ 𝐸 ) ) |
197 |
63 77 83 157 195 196
|
syl32anc |
⊢ ( 𝜑 → 𝐻 finSupp ( 0g ‘ 𝐸 ) ) |
198 |
51
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐴 ) ) = ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) |
199 |
198 171
|
eqtr2d |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) = ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
200 |
197 199
|
breqtrd |
⊢ ( 𝜑 → 𝐻 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) |
201 |
2 6 9 4 7 14
|
drgextgsum |
⊢ ( 𝜑 → ( 𝐸 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐿 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 𝐵 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐿 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) ) |
202 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑋 ∈ ( LBasis ‘ 𝐶 ) ) |
203 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |
204 |
|
subrgsubg |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝑈 ∈ ( SubGrp ‘ 𝐸 ) ) |
205 |
|
subgsubm |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐸 ) → 𝑈 ∈ ( SubMnd ‘ 𝐸 ) ) |
206 |
203 204 205
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑈 ∈ ( SubMnd ‘ 𝐸 ) ) |
207 |
116
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝐶 ∈ LMod ) |
208 |
67
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
209 |
121
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑋 ⊆ ( Base ‘ 𝐶 ) ) |
210 |
209 72
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ ( Base ‘ 𝐶 ) ) |
211 |
118 129 130 128
|
lmodvscl |
⊢ ( ( 𝐶 ∈ LMod ∧ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∧ 𝑖 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∈ ( Base ‘ 𝐶 ) ) |
212 |
207 208 210 211
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∈ ( Base ‘ 𝐶 ) ) |
213 |
4 35
|
ressbas2 |
⊢ ( 𝑈 ⊆ ( Base ‘ 𝐸 ) → 𝑈 = ( Base ‘ 𝐹 ) ) |
214 |
94 213
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐹 ) ) |
215 |
45 48
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ 𝐶 ) ) |
216 |
214 215
|
eqtrd |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
217 |
216
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑈 = ( Base ‘ 𝐶 ) ) |
218 |
212 217
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∈ 𝑈 ) |
219 |
218
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) : 𝑋 ⟶ 𝑈 ) |
220 |
202 206 219 4
|
gsumsubm |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 𝐹 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) |
221 |
|
eqid |
⊢ ( .r ‘ 𝐸 ) = ( .r ‘ 𝐸 ) |
222 |
4 221
|
ressmulr |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( .r ‘ 𝐸 ) = ( .r ‘ 𝐹 ) ) |
223 |
9 222
|
syl |
⊢ ( 𝜑 → ( .r ‘ 𝐸 ) = ( .r ‘ 𝐹 ) ) |
224 |
45 48
|
sravsca |
⊢ ( 𝜑 → ( .r ‘ 𝐹 ) = ( ·𝑠 ‘ 𝐶 ) ) |
225 |
223 224
|
eqtr2d |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝐶 ) = ( .r ‘ 𝐸 ) ) |
226 |
225
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ·𝑠 ‘ 𝐶 ) = ( .r ‘ 𝐸 ) ) |
227 |
226
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) = ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) |
228 |
227
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) |
229 |
228
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) ) |
230 |
3 7 10 112 111 13
|
drgextgsum |
⊢ ( 𝜑 → ( 𝐹 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) |
231 |
230
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐹 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) |
232 |
220 229 231
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) = ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ) |
233 |
232
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) ( .r ‘ 𝐸 ) 𝑗 ) = ( ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ( .r ‘ 𝐸 ) 𝑗 ) ) |
234 |
79
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝐸 ∈ Ring ) |
235 |
183
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( Base ‘ ( Scalar ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐸 ) ) |
236 |
235 208
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐸 ) ) |
237 |
216 94
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) ⊆ ( Base ‘ 𝐸 ) ) |
238 |
121 237
|
sstrd |
⊢ ( 𝜑 → 𝑋 ⊆ ( Base ‘ 𝐸 ) ) |
239 |
238
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑋 ⊆ ( Base ‘ 𝐸 ) ) |
240 |
239 72
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ ( Base ‘ 𝐸 ) ) |
241 |
|
eqid |
⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) |
242 |
|
eqid |
⊢ ( LBasis ‘ 𝐵 ) = ( LBasis ‘ 𝐵 ) |
243 |
241 242
|
lbsss |
⊢ ( 𝑌 ∈ ( LBasis ‘ 𝐵 ) → 𝑌 ⊆ ( Base ‘ 𝐵 ) ) |
244 |
14 243
|
syl |
⊢ ( 𝜑 → 𝑌 ⊆ ( Base ‘ 𝐵 ) ) |
245 |
92 94
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐵 ) ) |
246 |
244 245
|
sseqtrrd |
⊢ ( 𝜑 → 𝑌 ⊆ ( Base ‘ 𝐸 ) ) |
247 |
246
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑌 ⊆ ( Base ‘ 𝐸 ) ) |
248 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑗 ∈ 𝑌 ) |
249 |
247 248
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑗 ∈ ( Base ‘ 𝐸 ) ) |
250 |
35 221
|
ringass |
⊢ ( ( 𝐸 ∈ Ring ∧ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐸 ) ∧ 𝑖 ∈ ( Base ‘ 𝐸 ) ∧ 𝑗 ∈ ( Base ‘ 𝐸 ) ) ) → ( ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) = ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) |
251 |
234 236 240 249 250
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) = ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) |
252 |
251
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) = ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) ) |
253 |
252
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) ) = ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) ) ) |
254 |
|
eqid |
⊢ ( +g ‘ 𝐸 ) = ( +g ‘ 𝐸 ) |
255 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝐸 ∈ Ring ) |
256 |
244
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑌 ⊆ ( Base ‘ 𝐵 ) ) |
257 |
245
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐵 ) ) |
258 |
256 257
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑌 ⊆ ( Base ‘ 𝐸 ) ) |
259 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑗 ∈ 𝑌 ) |
260 |
258 259
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → 𝑗 ∈ ( Base ‘ 𝐸 ) ) |
261 |
35 221
|
ringcl |
⊢ ( ( 𝐸 ∈ Ring ∧ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐸 ) ∧ 𝑖 ∈ ( Base ‘ 𝐸 ) ) → ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ∈ ( Base ‘ 𝐸 ) ) |
262 |
234 236 240 261
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ∈ ( Base ‘ 𝐸 ) ) |
263 |
171
|
breq2d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ↔ ( 𝐺 ‘ 𝑗 ) finSupp ( 0g ‘ 𝐸 ) ) ) |
264 |
263
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝐺 ‘ 𝑗 ) finSupp ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ↔ ( 𝐺 ‘ 𝑗 ) finSupp ( 0g ‘ 𝐸 ) ) ) |
265 |
20 264
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑗 ) finSupp ( 0g ‘ 𝐸 ) ) |
266 |
35 255 202 240 185 265
|
rmfsupp2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) finSupp ( 0g ‘ 𝐸 ) ) |
267 |
35 81 254 221 255 202 260 262 266
|
gsummulc1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ( .r ‘ 𝐸 ) 𝑗 ) ) ) = ( ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) ( .r ‘ 𝐸 ) 𝑗 ) ) |
268 |
253 267
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) ) = ( ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) 𝑖 ) ) ) ( .r ‘ 𝐸 ) 𝑗 ) ) |
269 |
21
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝐿 ‘ 𝑗 ) ( .r ‘ 𝐸 ) 𝑗 ) = ( ( 𝐶 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) ) ( .r ‘ 𝐸 ) 𝑗 ) ) |
270 |
233 268 269
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝐿 ‘ 𝑗 ) ( .r ‘ 𝐸 ) 𝑗 ) = ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) ) ) |
271 |
92 94
|
sravsca |
⊢ ( 𝜑 → ( .r ‘ 𝐸 ) = ( ·𝑠 ‘ 𝐵 ) ) |
272 |
271
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( .r ‘ 𝐸 ) = ( ·𝑠 ‘ 𝐵 ) ) |
273 |
272
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝐿 ‘ 𝑗 ) ( .r ‘ 𝐸 ) 𝑗 ) = ( ( 𝐿 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) |
274 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ∈ V ) |
275 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ V ) |
276 |
12
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ) ) |
277 |
11
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) |
278 |
14 13 274 275 276 277
|
offval22 |
⊢ ( 𝜑 → ( 𝐻 ∘f ( .r ‘ 𝐸 ) 𝐷 ) = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) ) |
279 |
278
|
oveqd |
⊢ ( 𝜑 → ( 𝑗 ( 𝐻 ∘f ( .r ‘ 𝐸 ) 𝐷 ) 𝑖 ) = ( 𝑗 ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) 𝑖 ) ) |
280 |
279
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑗 ( 𝐻 ∘f ( .r ‘ 𝐸 ) 𝐷 ) 𝑖 ) = ( 𝑗 ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) 𝑖 ) ) |
281 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ∈ V ) |
282 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) = ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) |
283 |
282
|
ovmpt4g |
⊢ ( ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ∧ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ∈ V ) → ( 𝑗 ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) 𝑖 ) = ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) |
284 |
248 72 281 283
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑗 ( 𝑗 ∈ 𝑌 , 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) 𝑖 ) = ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) |
285 |
280 284
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) = ( 𝑗 ( 𝐻 ∘f ( .r ‘ 𝐸 ) 𝐷 ) 𝑖 ) ) |
286 |
285
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) = ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝐻 ∘f ( .r ‘ 𝐸 ) 𝐷 ) 𝑖 ) ) ) |
287 |
286
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑖 ) ( .r ‘ 𝐸 ) ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ) ) ) = ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝐻 ∘f ( .r ‘ 𝐸 ) 𝐷 ) 𝑖 ) ) ) ) |
288 |
270 273 287
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) → ( ( 𝐿 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) = ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝐻 ∘f ( .r ‘ 𝐸 ) 𝐷 ) 𝑖 ) ) ) ) |
289 |
288
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐿 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) = ( 𝑗 ∈ 𝑌 ↦ ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝐻 ∘f ( .r ‘ 𝐸 ) 𝐷 ) 𝑖 ) ) ) ) ) |
290 |
289
|
oveq2d |
⊢ ( 𝜑 → ( 𝐸 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐿 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 𝐸 Σg ( 𝑗 ∈ 𝑌 ↦ ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝐻 ∘f ( .r ‘ 𝐸 ) 𝐷 ) 𝑖 ) ) ) ) ) ) |
291 |
|
ringcmn |
⊢ ( 𝐸 ∈ Ring → 𝐸 ∈ CMnd ) |
292 |
79 291
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ CMnd ) |
293 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑘 ∈ ( Base ‘ 𝐴 ) ) ) → 𝐸 ∈ Ring ) |
294 |
52 183
|
eqsstrd |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐴 ) ) ⊆ ( Base ‘ 𝐸 ) ) |
295 |
294
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑘 ∈ ( Base ‘ 𝐴 ) ) ) → ( Base ‘ ( Scalar ‘ 𝐴 ) ) ⊆ ( Base ‘ 𝐸 ) ) |
296 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑘 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
297 |
295 296
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑘 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑙 ∈ ( Base ‘ 𝐸 ) ) |
298 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑘 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑘 ∈ ( Base ‘ 𝐴 ) ) |
299 |
30 37
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐴 ) ) |
300 |
299
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑘 ∈ ( Base ‘ 𝐴 ) ) ) → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐴 ) ) |
301 |
298 300
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑘 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑘 ∈ ( Base ‘ 𝐸 ) ) |
302 |
35 221
|
ringcl |
⊢ ( ( 𝐸 ∈ Ring ∧ 𝑙 ∈ ( Base ‘ 𝐸 ) ∧ 𝑘 ∈ ( Base ‘ 𝐸 ) ) → ( 𝑙 ( .r ‘ 𝐸 ) 𝑘 ) ∈ ( Base ‘ 𝐸 ) ) |
303 |
293 297 301 302
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑘 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑙 ( .r ‘ 𝐸 ) 𝑘 ) ∈ ( Base ‘ 𝐸 ) ) |
304 |
35 221
|
ringcl |
⊢ ( ( 𝐸 ∈ Ring ∧ 𝑖 ∈ ( Base ‘ 𝐸 ) ∧ 𝑗 ∈ ( Base ‘ 𝐸 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐸 ) ) |
305 |
234 240 249 304
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐸 ) ) |
306 |
299
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐴 ) ) |
307 |
305 306
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐴 ) ) |
308 |
307
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ) ) → ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐴 ) ) |
309 |
308
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑌 ∀ 𝑖 ∈ 𝑋 ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐴 ) ) |
310 |
11
|
fmpo |
⊢ ( ∀ 𝑗 ∈ 𝑌 ∀ 𝑖 ∈ 𝑋 ( 𝑖 ( .r ‘ 𝐸 ) 𝑗 ) ∈ ( Base ‘ 𝐴 ) ↔ 𝐷 : ( 𝑌 × 𝑋 ) ⟶ ( Base ‘ 𝐴 ) ) |
311 |
309 310
|
sylib |
⊢ ( 𝜑 → 𝐷 : ( 𝑌 × 𝑋 ) ⟶ ( Base ‘ 𝐴 ) ) |
312 |
|
inidm |
⊢ ( ( 𝑌 × 𝑋 ) ∩ ( 𝑌 × 𝑋 ) ) = ( 𝑌 × 𝑋 ) |
313 |
303 76 311 59 59 312
|
off |
⊢ ( 𝜑 → ( 𝐻 ∘f ( .r ‘ 𝐸 ) 𝐷 ) : ( 𝑌 × 𝑋 ) ⟶ ( Base ‘ 𝐸 ) ) |
314 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝐴 ) ) → 𝐸 ∈ Ring ) |
315 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝐴 ) ) → 𝑢 ∈ ( Base ‘ 𝐴 ) ) |
316 |
299
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝐴 ) ) → ( Base ‘ 𝐸 ) = ( Base ‘ 𝐴 ) ) |
317 |
315 316
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝐴 ) ) → 𝑢 ∈ ( Base ‘ 𝐸 ) ) |
318 |
35 221 81
|
ringlz |
⊢ ( ( 𝐸 ∈ Ring ∧ 𝑢 ∈ ( Base ‘ 𝐸 ) ) → ( ( 0g ‘ 𝐸 ) ( .r ‘ 𝐸 ) 𝑢 ) = ( 0g ‘ 𝐸 ) ) |
319 |
314 317 318
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝐴 ) ) → ( ( 0g ‘ 𝐸 ) ( .r ‘ 𝐸 ) 𝑢 ) = ( 0g ‘ 𝐸 ) ) |
320 |
59 83 83 76 311 197 319
|
offinsupp1 |
⊢ ( 𝜑 → ( 𝐻 ∘f ( .r ‘ 𝐸 ) 𝐷 ) finSupp ( 0g ‘ 𝐸 ) ) |
321 |
35 81 292 14 13 313 320
|
gsumxp |
⊢ ( 𝜑 → ( 𝐸 Σg ( 𝐻 ∘f ( .r ‘ 𝐸 ) 𝐷 ) ) = ( 𝐸 Σg ( 𝑗 ∈ 𝑌 ↦ ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ ( 𝑗 ( 𝐻 ∘f ( .r ‘ 𝐸 ) 𝐷 ) 𝑖 ) ) ) ) ) ) |
322 |
30 37
|
sravsca |
⊢ ( 𝜑 → ( .r ‘ 𝐸 ) = ( ·𝑠 ‘ 𝐴 ) ) |
323 |
322
|
ofeqd |
⊢ ( 𝜑 → ∘f ( .r ‘ 𝐸 ) = ∘f ( ·𝑠 ‘ 𝐴 ) ) |
324 |
323
|
oveqd |
⊢ ( 𝜑 → ( 𝐻 ∘f ( .r ‘ 𝐸 ) 𝐷 ) = ( 𝐻 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) ) |
325 |
324
|
oveq2d |
⊢ ( 𝜑 → ( 𝐸 Σg ( 𝐻 ∘f ( .r ‘ 𝐸 ) 𝐷 ) ) = ( 𝐸 Σg ( 𝐻 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) ) ) |
326 |
290 321 325
|
3eqtr2rd |
⊢ ( 𝜑 → ( 𝐸 Σg ( 𝐻 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) ) = ( 𝐸 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐿 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) ) |
327 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐻 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) ∈ V ) |
328 |
15
|
elfvexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
329 |
1 327 6 328 37
|
gsumsra |
⊢ ( 𝜑 → ( 𝐸 Σg ( 𝐻 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) ) = ( 𝐴 Σg ( 𝐻 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) ) ) |
330 |
326 329
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐸 Σg ( 𝑗 ∈ 𝑌 ↦ ( ( 𝐿 ‘ 𝑗 ) ( ·𝑠 ‘ 𝐵 ) 𝑗 ) ) ) = ( 𝐴 Σg ( 𝐻 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) ) ) |
331 |
18 201 330
|
3eqtr2d |
⊢ ( 𝜑 → 𝑍 = ( 𝐴 Σg ( 𝐻 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) ) ) |
332 |
200 331
|
jca |
⊢ ( 𝜑 → ( 𝐻 finSupp ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑍 = ( 𝐴 Σg ( 𝐻 ∘f ( ·𝑠 ‘ 𝐴 ) 𝐷 ) ) ) ) |