Step |
Hyp |
Ref |
Expression |
1 |
|
suppovss.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
2 |
|
suppovss.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ) |
3 |
|
suppovss.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
suppovss.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
5 |
|
suppovss.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐷 ) |
6 |
|
suppovss.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐶 ∈ 𝐷 ) |
7 |
6
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ) |
8 |
1
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ) |
9 |
7 8
|
sylib |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐷 ) |
10 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝑧 = 〈 𝑥 , 𝑦 〉 ) |
11 |
10
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
12 |
|
df-ov |
⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) |
13 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) |
14 |
13
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝑥 ∈ 𝐴 ) |
15 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝑦 ∈ 𝐵 ) |
16 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝜑 ) |
17 |
16 14 15 6
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝐶 ∈ 𝐷 ) |
18 |
1
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷 ) → ( 𝑥 𝐹 𝑦 ) = 𝐶 ) |
19 |
14 15 17 18
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑥 𝐹 𝑦 ) = 𝐶 ) |
20 |
12 19
|
eqtr3id |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝐶 ) |
21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
22 |
21
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∈ V ) |
23 |
22 2
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ V ) |
24 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ⊆ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) |
25 |
|
snex |
⊢ { 𝑍 } ∈ V |
26 |
25
|
a1i |
⊢ ( 𝜑 → { 𝑍 } ∈ V ) |
27 |
4 26
|
xpexd |
⊢ ( 𝜑 → ( 𝐵 × { 𝑍 } ) ∈ V ) |
28 |
23 24 3 27
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐵 × { 𝑍 } ) ) |
29 |
28
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) → ( ( 𝐺 ‘ 𝑥 ) ‘ 𝑦 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑦 ) ) |
30 |
16 13 29
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( ( 𝐺 ‘ 𝑥 ) ‘ 𝑦 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑦 ) ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
32 |
2
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∈ V ) → ( 𝐺 ‘ 𝑥 ) = ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ) |
33 |
31 22 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝑦 ∈ 𝐵 ↦ 𝐶 ) ) |
34 |
6
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ 𝐷 ) |
35 |
33 34
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑥 ) ‘ 𝑦 ) = 𝐶 ) |
36 |
16 14 15 35
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( ( 𝐺 ‘ 𝑥 ) ‘ 𝑦 ) = 𝐶 ) |
37 |
16 5
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝑍 ∈ 𝐷 ) |
38 |
|
fvconst2g |
⊢ ( ( 𝑍 ∈ 𝐷 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐵 × { 𝑍 } ) ‘ 𝑦 ) = 𝑍 ) |
39 |
37 15 38
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( ( 𝐵 × { 𝑍 } ) ‘ 𝑦 ) = 𝑍 ) |
40 |
30 36 39
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝐶 = 𝑍 ) |
41 |
11 20 40
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐹 ‘ 𝑧 ) = 𝑍 ) |
42 |
41
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) × 𝐵 ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐹 ‘ 𝑧 ) = 𝑍 ) |
43 |
|
elxp2 |
⊢ ( 𝑧 ∈ ( ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) × 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ∃ 𝑦 ∈ 𝐵 𝑧 = 〈 𝑥 , 𝑦 〉 ) |
44 |
43
|
biimpi |
⊢ ( 𝑧 ∈ ( ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) × 𝐵 ) → ∃ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ∃ 𝑦 ∈ 𝐵 𝑧 = 〈 𝑥 , 𝑦 〉 ) |
45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) × 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ∃ 𝑦 ∈ 𝐵 𝑧 = 〈 𝑥 , 𝑦 〉 ) |
46 |
42 45
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) × 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) = 𝑍 ) |
47 |
46
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐴 × 𝐵 ) ∖ ( ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) × ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) ∧ 𝑧 ∈ ( ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) × 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) = 𝑍 ) |
48 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝑧 = 〈 𝑥 , 𝑦 〉 ) |
49 |
48
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
50 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝑥 ∈ 𝐴 ) |
51 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) |
52 |
51
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝑦 ∈ 𝐵 ) |
53 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝜑 ) |
54 |
53 50 52 6
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝐶 ∈ 𝐷 ) |
55 |
50 52 54 18
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑥 𝐹 𝑦 ) = 𝐶 ) |
56 |
12 55
|
eqtr3id |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝐶 ) |
57 |
53 50 52 35
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( ( 𝐺 ‘ 𝑥 ) ‘ 𝑦 ) = 𝐶 ) |
58 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑥 ) ‘ 𝑦 ) ∈ V ) |
59 |
34 33 58
|
fmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) : 𝐵 ⟶ V ) |
60 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐺 ‘ 𝑥 ) supp 𝑍 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) supp 𝑍 ) ) |
61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) supp 𝑍 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) supp 𝑍 ) ) |
62 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑘 ) ) |
63 |
62
|
oveq1d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝐺 ‘ 𝑥 ) supp 𝑍 ) = ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) |
64 |
63
|
cbviunv |
⊢ ∪ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) supp 𝑍 ) = ∪ 𝑘 ∈ 𝐴 ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) |
65 |
61 64
|
sseqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) supp 𝑍 ) ⊆ ∪ 𝑘 ∈ 𝐴 ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) |
66 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) → 𝜑 ) |
67 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) → 𝑘 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) |
68 |
67
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) → 𝑘 ∈ 𝐴 ) |
69 |
23 24 3 27
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐵 × { 𝑍 } ) ) |
70 |
|
eleq1w |
⊢ ( 𝑥 = 𝑘 → ( 𝑥 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴 ) ) |
71 |
70
|
anbi2d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ) ) |
72 |
62
|
fneq1d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝐺 ‘ 𝑥 ) Fn 𝐵 ↔ ( 𝐺 ‘ 𝑘 ) Fn 𝐵 ) ) |
73 |
71 72
|
imbi12d |
⊢ ( 𝑥 = 𝑘 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) Fn 𝐵 ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑘 ) Fn 𝐵 ) ) ) |
74 |
59
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) Fn 𝐵 ) |
75 |
73 74
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑘 ) Fn 𝐵 ) |
76 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
77 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑍 ∈ 𝐷 ) |
78 |
|
fnsuppeq0 |
⊢ ( ( ( 𝐺 ‘ 𝑘 ) Fn 𝐵 ∧ 𝐵 ∈ 𝑊 ∧ 𝑍 ∈ 𝐷 ) → ( ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) = ∅ ↔ ( 𝐺 ‘ 𝑘 ) = ( 𝐵 × { 𝑍 } ) ) ) |
79 |
75 76 77 78
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) = ∅ ↔ ( 𝐺 ‘ 𝑘 ) = ( 𝐵 × { 𝑍 } ) ) ) |
80 |
79
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( 𝐺 ‘ 𝑘 ) = ( 𝐵 × { 𝑍 } ) ) → ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) = ∅ ) |
81 |
66 68 69 80
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) → ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) = ∅ ) |
82 |
81
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) = ∅ ) |
83 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) |
84 |
83
|
iunxdif3 |
⊢ ( ∀ 𝑘 ∈ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) = ∅ → ∪ 𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) = ∪ 𝑘 ∈ 𝐴 ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) |
85 |
82 84
|
syl |
⊢ ( 𝜑 → ∪ 𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) = ∪ 𝑘 ∈ 𝐴 ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) |
86 |
|
dfin4 |
⊢ ( 𝐴 ∩ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) = ( 𝐴 ∖ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) |
87 |
|
suppssdm |
⊢ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ⊆ dom 𝐺 |
88 |
87 23
|
fssdm |
⊢ ( 𝜑 → ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ⊆ 𝐴 ) |
89 |
|
sseqin2 |
⊢ ( ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ⊆ 𝐴 ↔ ( 𝐴 ∩ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) = ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) |
90 |
88 89
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) = ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) |
91 |
86 90
|
eqtr3id |
⊢ ( 𝜑 → ( 𝐴 ∖ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) = ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) |
92 |
91
|
iuneq1d |
⊢ ( 𝜑 → ∪ 𝑘 ∈ ( 𝐴 ∖ ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) = ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) |
93 |
85 92
|
eqtr3d |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) = ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) |
94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∪ 𝑘 ∈ 𝐴 ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) = ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) |
95 |
65 94
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) supp 𝑍 ) ⊆ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) |
96 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑍 ∈ 𝐷 ) |
97 |
59 95 21 96
|
suppssr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) → ( ( 𝐺 ‘ 𝑥 ) ‘ 𝑦 ) = 𝑍 ) |
98 |
97
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( ( 𝐺 ‘ 𝑥 ) ‘ 𝑦 ) = 𝑍 ) |
99 |
57 98
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝐶 = 𝑍 ) |
100 |
49 56 99
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐹 ‘ 𝑧 ) = 𝑍 ) |
101 |
100
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 × ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐹 ‘ 𝑧 ) = 𝑍 ) |
102 |
|
elxp2 |
⊢ ( 𝑧 ∈ ( 𝐴 × ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) 𝑧 = 〈 𝑥 , 𝑦 〉 ) |
103 |
102
|
biimpi |
⊢ ( 𝑧 ∈ ( 𝐴 × ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) 𝑧 = 〈 𝑥 , 𝑦 〉 ) |
104 |
103
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 × ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) 𝑧 = 〈 𝑥 , 𝑦 〉 ) |
105 |
101 104
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 × ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = 𝑍 ) |
106 |
105
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐴 × 𝐵 ) ∖ ( ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) × ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) ∧ 𝑧 ∈ ( 𝐴 × ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = 𝑍 ) |
107 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐴 × 𝐵 ) ∖ ( ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) × ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) → 𝑧 ∈ ( ( 𝐴 × 𝐵 ) ∖ ( ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) × ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) |
108 |
|
difxp |
⊢ ( ( 𝐴 × 𝐵 ) ∖ ( ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) × ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) = ( ( ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) × 𝐵 ) ∪ ( 𝐴 × ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) |
109 |
107 108
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐴 × 𝐵 ) ∖ ( ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) × ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) → 𝑧 ∈ ( ( ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) × 𝐵 ) ∪ ( 𝐴 × ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) ) |
110 |
|
elun |
⊢ ( 𝑧 ∈ ( ( ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) × 𝐵 ) ∪ ( 𝐴 × ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) ↔ ( 𝑧 ∈ ( ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) × 𝐵 ) ∨ 𝑧 ∈ ( 𝐴 × ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) ) |
111 |
109 110
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐴 × 𝐵 ) ∖ ( ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) × ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) → ( 𝑧 ∈ ( ( 𝐴 ∖ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ) × 𝐵 ) ∨ 𝑧 ∈ ( 𝐴 × ( 𝐵 ∖ ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) ) |
112 |
47 106 111
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐴 × 𝐵 ) ∖ ( ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) × ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = 𝑍 ) |
113 |
9 112
|
suppss |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) × ∪ 𝑘 ∈ ( 𝐺 supp ( 𝐵 × { 𝑍 } ) ) ( ( 𝐺 ‘ 𝑘 ) supp 𝑍 ) ) ) |